A static technique for the electro-mechanical characterization of MEMS devices for RF and microwave applications

2002 ◽  
Vol 729 ◽  
Author(s):  
Anupama B. Kaul ◽  
Tomasz Klosowiak ◽  
Joshua Liu

AbstractAn approach for measuring force-dependent properties of microscopic structures commonly found in MEMS has been developed. The system has the capability of measuring forces and deflections of the order of micro-newtons and micro-meters, respectively. By implementing a visual inspection system, force is applied to localized areas on a beam, and the resulting force-deflection characteristic can be obtained. From this beam stiffness and effective elastic modulus can be calculated. These results were compared to simulation, which was performed using ANSYS FEM code. In addition, by applying a known mechanical force, direct correlation to voltage and thus electrostatic force can be obtained, which also elucidates the magnitude of the electrostatic feedback effect. Characterization of other force-dependent parameters such as DC contact resistance and isolation/insertion loss at RF and microwave frequencies was obtained experimentally, from which parameters such as lumped capacitance can be extracted.

2017 ◽  
Vol 137 (1) ◽  
pp. 46-47
Author(s):  
Takeshi Kohno ◽  
Masato Mihara ◽  
Ataru Tanabe ◽  
Takashi Abe ◽  
Masanori Okuyama ◽  
...  

2018 ◽  
Author(s):  
Devon Jakob ◽  
Le Wang ◽  
Haomin Wang ◽  
Xiaoji Xu

<p>In situ measurements of the chemical compositions and mechanical properties of kerogen help understand the formation, transformation, and utilization of organic matter in the oil shale at the nanoscale. However, the optical diffraction limit prevents attainment of nanoscale resolution using conventional spectroscopy and microscopy. Here, we utilize peak force infrared (PFIR) microscopy for multimodal characterization of kerogen in oil shale. The PFIR provides correlative infrared imaging, mechanical mapping, and broadband infrared spectroscopy capability with 6 nm spatial resolution. We observed nanoscale heterogeneity in the chemical composition, aromaticity, and maturity of the kerogens from oil shales from Eagle Ford shale play in Texas. The kerogen aromaticity positively correlates with the local mechanical moduli of the surrounding inorganic matrix, manifesting the Le Chatelier’s principle. In situ spectro-mechanical characterization of oil shale will yield valuable insight for geochemical and geomechanical modeling on the origin and transformation of kerogen in the oil shale.</p>


2017 ◽  
Vol 5 (3) ◽  
pp. 8
Author(s):  
KUMAR DINESH ◽  
KAUR ARSHDEEP ◽  
AGGARWAL YUGAM KUMAR ◽  
UNIYAL PIYUSH ◽  
KUMAR NAVIN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document