Next Generation Positive Electrode Materials Enabled by Nanocomposites: -Metal Fluorides-

2002 ◽  
Vol 756 ◽  
Author(s):  
F. Badway ◽  
N. Pereira ◽  
F. Cosandey ◽  
G. G. Amatucci

ABSTRACTThrough the use of nanostructures and nanocomposites, the electrochemical activity of metal fluoride materials was opened as potential candidates as next generation high energy density positive electrodes for Li batteries. This class of materials, utilizing FeF3 as an example, is shown to exhibit good reversible behavior of approximately 200 mAh/g in the 3V region. The specific capacity is extended to 600 mAh/g when the discharge is extended to take into account the additional specific capacity associated with a 2V plateau. Through the use of XRD, SAED and high resolution TEM, the 2V reaction mechanism was associated to a reversible metal fluoride conversion mechanism. It is shown that LiF + Fe nanocomposite can be utilized as initial components in order to make the technology suitable for Li-ion applications. Although exhibiting relatively poor rate capabilities at this initial stage, reversible conversion metal fluorides enable for the first time the utilization of all the redox states of the constituent metal in a reversible manner in the positive electrode. This translates to 4X the specific capacity and double the energy density of today's state of the art LiCoO2.

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Xin Shen ◽  
Xue-Qiang Zhang ◽  
Fei Ding ◽  
Jia-Qi Huang ◽  
Rui Xu ◽  
...  

Lithium- (Li-) ion batteries have revolutionized our daily life towards wireless and clean style, and the demand for batteries with higher energy density and better safety is highly required. The next-generation batteries with innovatory chemistry, material, and engineering breakthroughs are in strong pursuit currently. Herein, the key historical developments of practical electrode materials in Li-ion batteries are summarized as the cornerstone for the innovation of next-generation batteries. In addition, the emerging electrode materials for next-generation batteries are discussed as the revolving challenges and potential strategies. Finally, the future scenario of high-energy-density rechargeable batteries is presented. The combination of theory and experiment under multiscale is highlighted to promote the development of emerging electrode materials.


2019 ◽  
Vol 10 ◽  
pp. 2207-2216 ◽  
Author(s):  
Xiaoxiang Wang ◽  
Teng Wang ◽  
Rusen Zhou ◽  
Lijuan Fan ◽  
Shengli Zhang ◽  
...  

Transition metal compounds such as nickel cobalt sulfides (Ni–Co–S) are promising electrode materials for energy storage devices such as supercapacitors owing to their high electrochemical performance and good electrical conductivity. Developing ultrathin nanostructured materials is critical to achieving high electrochemical performance, because they possess rich active sites for electrochemical reactions, shortening the transport path of ions in the electrolyte during the charge/discharge processes. This paper describes the synthesis of ultrathin (around 10 nm) flower-like Ni1− x Co x S2 nanoflakes by using templated NiCo oxides. The as-prepared Ni1− x Co x S2 material retained the morphology of the initial NiCo oxide material and exhibited a much improved electrochemical performance. The Ni1− x Co x S2 electrode material exhibited a maximum specific capacity of 1066.8 F·g−1 (533.4 C·g−1) at 0.5 A·g−1 and a capacity retention of 63.4% at 20 A·g−1 in an asymmetric supercapacitor (ASC). The ASC showed a superior energy density of 100.5 Wh·kg−1 (at a power density of 1.5 kW·kg−1), an ultrahigh power density of 30 kW·kg−1 (at an energy density of 67.5 Wh·kg−1) and excellent cycling stability. This approach can be a low-cost way to mass-produce high-performance electrode materials for supercapacitors.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Chen Li ◽  
Xiong Zhang ◽  
Kai Wang ◽  
Xianzhong Sun ◽  
Yanan Xu ◽  
...  

AbstractLithium-ion capacitors are envisaged as promising energy-storage devices to simultaneously achieve a large energy density and high-power output at quick charge and discharge rates. However, the mismatched kinetics between capacitive cathodes and faradaic anodes still hinder their practical application for high-power purposes. To tackle this problem, the electron and ion transport of both electrodes should be substantially improved by targeted structural design and controllable chemical doping. Herein, nitrogen-enriched graphene frameworks are prepared via a large-scale and ultrafast magnesiothermic combustion synthesis using CO2 and melamine as precursors, which exhibit a crosslinked porous structure, abundant functional groups and high electrical conductivity (10524 S m−1). The material essentially delivers upgraded kinetics due to enhanced ion diffusion and electron transport. Excellent capacities of 1361 mA h g−1 and 827 mA h g−1 can be achieved at current densities of 0.1 A g−1 and 3 A g−1, respectively, demonstrating its outstanding lithium storage performance at both low and high rates. Moreover, the lithium-ion capacitor based on these nitrogen-enriched graphene frameworks displays a high energy density of 151 Wh kg−1, and still retains 86 Wh kg−1 even at an ultrahigh power output of 49 kW kg−1. This study reveals an effective pathway to achieve synergistic kinetics in carbon electrode materials for achieving high-power lithium-ion capacitors.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3586
Author(s):  
Qi An ◽  
Xingru Zhao ◽  
Shuangfu Suo ◽  
Yuzhu Bai

Lithium-ion capacitors (LICs) have been widely explored for energy storage. Nevertheless, achieving good energy density, satisfactory power density, and stable cycle life is still challenging. For this study, we fabricated a novel LIC with a NiO-rGO composite as a negative material and commercial activated carbon (AC) as a positive material for energy storage. The NiO-rGO//AC system utilizes NiO nanoparticles uniformly distributed in rGO to achieve a high specific capacity (with a current density of 0.5 A g−1 and a charge capacity of 945.8 mA h g−1) and uses AC to provide a large specific surface area and adjustable pore structure, thereby achieving excellent electrochemical performance. In detail, the NiO-rGO//AC system (with a mass ratio of 1:3) can achieve a high energy density (98.15 W h kg−1), a high power density (10.94 kW kg−1), and a long cycle life (with 72.1% capacity retention after 10,000 cycles). This study outlines a new option for the manufacture of LIC devices that feature both high energy and high power densities.


2008 ◽  
Vol 62 (26) ◽  
pp. 4210-4212 ◽  
Author(s):  
Daliang Liu ◽  
Shiying Zhan ◽  
Gang Chen ◽  
Wencheng Pan ◽  
Chunzhong Wang ◽  
...  

2018 ◽  
Vol 6 (21) ◽  
pp. 9846-9853 ◽  
Author(s):  
Ranjith Thangavel ◽  
Aravindaraj G. Kannan ◽  
Rubha Ponraj ◽  
Xueliang Sun ◽  
Dong-Won Kim ◽  
...  

Developing sodium based energy storage systems that retain high energy density at high power along with stable cycling is of paramount importance to meet the energy demands of next generation applications.


2021 ◽  
Vol 16 (7) ◽  
pp. 1134-1142
Author(s):  
Wenduo Yang ◽  
Jun Xiang ◽  
Sroeurb Loy ◽  
Nan Bu ◽  
Duo Cui ◽  
...  

NiCo2O4 as an electrode material for supercapacitors (SCs) has been studied by a host of researchers due to its unique structural characteristics and high capacitance. However, its performance has not yet reached the level of practical applications.it is an effective strategy to synthesize composite electrode materials for tackling the problem. Herein, NiCo2O4@ZnCo2O4 as a novel core–shell composite electrode material has been fabricated through a two-step simple hydrothermal method. The as-prepared sample can be directly used as cathode material of a supercapacitor, and its specific capacitance is 463.1 C/g at 1 A/g. An assembled capacitor has an energy density of 77 Wh·kg−1 at 2700 W·kg−1, and after 8000 cycles, 88% of the initial capacity remains.


2018 ◽  
Vol 42 (9) ◽  
pp. 7043-7048 ◽  
Author(s):  
Yun Deng ◽  
Aifei Xu ◽  
Wangting Lu ◽  
Yanhua Yu ◽  
Cheng Fu ◽  
...  

Graphene-ordered mesoporous carbon hybrids exhibited advanced specific capacity, high energy density and power density, and long cycle life.


Sign in / Sign up

Export Citation Format

Share Document