A Study of Electronic Defects in Hydrogenated Amorphous Silicon Prepared by the Expanding Thermal Plasma Technique
AbstractThe electronic properties of amorphous silicon films prepared by the expanding thermal plasma technique have been studied using steady-state and transient photoconductivity measurements. It is found that films deposited at a substrate temperature of 400°C have a conduction band tail slope of 29 meV, deep defect density of order 3×1016 cm-3, an Urbach tail slope of 65 meV, defect absorption of 5-10 cm-1, and a mobility-lifetime product of 1.3×10-7 cm2 V-1. Aslight increase in defect density and reduction in mobility-lifetime product is observed on moderate light-soaking. The overall optoelectronic quality is somewhat poorer than commercial PECVD material, but there is scope for improvement as deposition conditions are further optimised.