Modified BiFeO3-PbTiO3 Morphotropic Phase Boundary (MPB) Piezoelectric Ceramics for High Temperature and High Power Applications

2003 ◽  
Vol 785 ◽  
Author(s):  
JinRong Cheng ◽  
L. Eric Cross

ABSTRACTBiFeO3-PbTiO3 (BF-PT) crystalline solutions have been modified by La3+, Ga3+ and Ba2+ substituent. The modified BF-PT had morphotropic phase boundary (MPB), at which the ferroelectric rhombohedral phase transferred to the tetragonal symmetry. The piezoelectric properties at the MPB were strongly depended on different substituents. The modified BF-PT system showed the insulation resistivity up to 1012 ω·cm at room temperature. Lanthanum played a critical role making BF-PT softer to be poled to the piezoelectric state. Ga provided BF-PT additional polarization and breakdown strength with La substituent. In the system with La3+, Ga3+ and Ba3+ simultaneously, addition of Ba enhanced dielectric and piezoelectric activity. It was flexible to tailor BF-PT by using different substituents. In the vicinity of MPB, the Curie temperature Tc was above 385°C of BF-PT for La <10 at%, whereas the d33 constant was as high as 295 pC/N for one with La of 20 at%. The modified BF-PT revealed comparable performances to conventional Pb(Zr,Ti)O3 (PZT) ceramics, but in significantly lead reduced forms.

2014 ◽  
Vol 787 ◽  
pp. 242-246
Author(s):  
Rui Lin Wu ◽  
Tomoaki Karaki ◽  
Jiang Tao Zeng ◽  
Liao Ying Zheng ◽  
Wei Ruan ◽  
...  

Lead-based piezoelectric ceramics have excellent piezoelectric properties with the compositions near the rhombohedral-tetragonal morphotropic phase boundary (MPB)[1,2]. In these materials, the dielectric and piezoelectric properties show the maximal values at MPB. For lead-free piezoelectric ceramics, finding the MPB area is a promising way to improve their properties. In this paper, the (1-x-y)BaZrO3-x(K0.45Na0.5Li0.05)NbO3-yBi (Mg0.5Ti0.5)O3 lead-free piezoelectric ceramics were prepared by solid-state reaction method, and their piezoelectric properties and dielectric properties were investigated. With the increase of KNLN content, the crystal structure changed from rombohedral phase to tetragonal phase, thus existed a MPB[3,4] between rombohedral and tetragonal phase. At room temperature, the specimen with the composition at MPB (x=0.93, y=0.01) shows the optimal piezoelectric properties (d33=225pC/N and kp=45%), which indicates that this material is a potential lead-free piezoceramic.


2008 ◽  
Vol 368-372 ◽  
pp. 1908-1910 ◽  
Author(s):  
Wei Zhao ◽  
He Ping Zhou ◽  
Yong Ke Yan ◽  
Dan Liu

A lead-free piezoelectric ceramic binary system based on bismuth sodium titanate (Bi0.5Na0.5)TiO3 (BNT)-bismuth potassium titanate (Bi0.5K0.5)TiO3 (BKT) was synthesized by conventional mixed-oxide technique. The XRD analysis showed that the rhombohedral-tetragonal morphotropic phase boundary (MPB) of the Bi0.5 (Na1-xKx)0.5 TiO3 system was in the composition range of x = 0.16 ~ 0.20. In addition, the piezoelectric properties of this system were also investigated. It was indicated that the piezoelectric properties are better with the compositions near the rhombohedral phase within the MPB than the compositions near the tetragonal phase.


2016 ◽  
Vol 113 (47) ◽  
pp. 13301-13306 ◽  
Author(s):  
Dezhen Xue ◽  
Prasanna V. Balachandran ◽  
Ruihao Yuan ◽  
Tao Hu ◽  
Xiaoning Qian ◽  
...  

An outstanding challenge in the nascent field of materials informatics is to incorporate materials knowledge in a robust Bayesian approach to guide the discovery of new materials. Utilizing inputs from known phase diagrams, features or material descriptors that are known to affect the ferroelectric response, and Landau–Devonshire theory, we demonstrate our approach for BaTiO3-based piezoelectrics with the desired target of a vertical morphotropic phase boundary. We predict, synthesize, and characterize a solid solution, (Ba0.5Ca0.5)TiO3-Ba(Ti0.7Zr0.3)O3, with piezoelectric properties that show better temperature reliability than other BaTiO3-based piezoelectrics in our initial training data.


2020 ◽  
Vol 49 (17) ◽  
pp. 5573-5580 ◽  
Author(s):  
Yunjing Shi ◽  
Hairui Bai ◽  
Fei Yan ◽  
Rui Hu ◽  
Kaikai Chen ◽  
...  

The component with the R–T phase coexistence near MPB affords an optimal piezoelectric coefficient (d33) of 130 pC N−1.


2002 ◽  
Vol 17 (5) ◽  
pp. 1085-1091 ◽  
Author(s):  
W. Z. Zhu ◽  
M. Yan ◽  
A. L. Kholkin ◽  
P. Q. Mantas ◽  
J. L. Baptista

The morphotropic phase boundary (MPB) composition that is characterized by the coexistence of rhombohedral and tetragonal phases in the Pb(Zn1/3Nb2/3)O3–BaTiO3– PbTiO3 system was modified by W-doping at the B site of a perovskite structural block. To maintain the electrical neutrality, creation of A-site vacancies was intentionally introduced in the formulation of the examined compositions. Incorporation of W ions was revealed to stabilize the tetragonal phase against the rhombohedral one, shifting the MPB toward the PZN-rich end at room temperature. High-temperature x-ray diffraction examination in combination with dielectric measurements discloses two successive phase transitions as a sample is cooled from high temperature, namely, paraelectric cubic to ferroelectric rhombohedral followed by ferroelectric rhombohedral to ferroelectric tetragonal. W addition appears to suppress the first transition while promoting the second one.


2016 ◽  
Vol 869 ◽  
pp. 13-18
Author(s):  
Margarete Soares da Silva ◽  
Lucas L. Silva ◽  
Eliane F. Souza ◽  
Elson Longo ◽  
Maria A. Zaghete ◽  
...  

Some piezoelectric properties of lead zirconate titanate PbZr0.53Ti0.47O3 ceramic samples sintered at 1100oC for 3 hours has been investigated in this work and compared to the strontium modification at 0.2, 0.4, and 0.6 mol%. Polarization versus Electric Field curve and d33 and Kp piezoelectric parameters was taken at room temperature in order to investigate the correlation with phase amount and lattice parameters of crystalline phases calculated through Rietveld refinement. The results indicated the lead substitution with 0.4 mol% of strontium enhances the d33 and Kp piezoelectric parameters, but there is no systematic variation of the piezoelectric properties with strontium content. By the other hand, tetragonal phase seems plays an important rule on piezoelectric devices operating near the room temperature and some correlations could be found.


2009 ◽  
Vol 24 (6) ◽  
pp. 2029-2034 ◽  
Author(s):  
Lu-Yang Zhao ◽  
Yu-Dong Hou ◽  
Li-Min Chang ◽  
Man-Kang Zhu ◽  
Hui Yan

Relaxor ferroelectrics of Pb(Zn1/3Nb2/3)0.5(Zr0.47Ti0.53)0.5O3 (0.5PZN-0.5PZT) were prepared using the conventional oxide mixing method. Both x-ray diffraction analysis and Raman spectroscopy indicate that the amounts of rhombohedral phase are close to tetragonal phase, implying the presence of the morphotropic phase boundary (MPB) in the system of 0.5PZN-0.5PZT, and this result was further confirmed by transmission electron microscopy (TEM) micrographs. At MPB composition, the excellent piezoelectric properties, such as kp (0.66) and d33 (425pC/N), were obtained due to the more possible polarization directions of domains and high dc resistivity of 6.5 × 1010 Ω·cm. Meanwhile, the dielectric studies revealed that the indicator of the degree of diffuseness γ value is 1.73, implying that the relaxor nature of the 0.5PZN-0.5PZT is ceramic. The activation energy related to the dc conductivity was estimated from a linear fitting of the Arrhenius law. The value of 0.09 and 1.04 eV for low and high temperature range corresponds well to the activation energies of migration and first ionization of the oxygen vacancies.


Sign in / Sign up

Export Citation Format

Share Document