Exploring Space Groups for Three Dimensional Photonic Band Gap Structures Via Level Set Equations: The Face Centered Cubic Lattice

2003 ◽  
Vol 788 ◽  
Author(s):  
Martin Maldovan ◽  
Chaitanya K. Ullal ◽  
Craig W. Carter ◽  
Edwin L. Thomas

ABSTRACTA level set approach was used to study photonic band gaps for dielectric composites with symmetries of the eleven face centered cubic lattices. Candidate structures were modeled for each group by a 3D surface given by f(x,y,z)-t=0 obtained by equating f to an appropriate sum of structure factor terms. This approach allows us to easily map different structures and gives us an insight into the effects of symmetry, connectivity and genus on photonic band gaps. It is seen that a basic set of symmetries defines the essential band gap and connectivity. The remaining symmetry elements modify the band gap. The eleven lattices are classified into four fundamental topologies on the basis of the occupancy of high symmetry Wyckoff sites. Of the fundamental topologies studied, three display band gaps--- including two: the (F-RD) and a group 216 structure that have not been reported previously.

2019 ◽  
Vol 116 (47) ◽  
pp. 23480-23486 ◽  
Author(s):  
Michael A. Klatt ◽  
Paul J. Steinhardt ◽  
Salvatore Torquato

We show that it is possible to construct foam-based heterostructures with complete photonic band gaps. Three-dimensional foams are promising candidates for the self-organization of large photonic networks with combinations of physical characteristics that may be useful for applications. The largest band gap found is based on 3D Weaire–Phelan foam, a structure that was originally introduced as a solution to the Kelvin problem of finding the 3D tessellation composed of equal-volume cells that has the least surface area. The photonic band gap has a maximal size of 16.9% (at a volume fraction of 21.6% for a dielectric contrast ε=13) and a high degree of isotropy, properties that are advantageous in designing photonic waveguides and circuits. We also present results for 2 other foam-based heterostructures based on Kelvin and C15 foams that have somewhat smaller but still significant band gaps.


2005 ◽  
Vol 72 (11) ◽  
Author(s):  
Hong-Bo Chen ◽  
Yong-Zheng Zhu ◽  
Yan-Ling Cao ◽  
Yan-Ping Wang ◽  
Yuan-Bin Chi

2019 ◽  
Vol 43 (41) ◽  
pp. 16264-16272 ◽  
Author(s):  
V. V. Vipin ◽  
Parvathy R. Chandran ◽  
Animesh M. Ramachandran ◽  
A. P. Mohamed ◽  
Saju Pillai

Enhanced fluorescence was achieved by tuning the photonic band gaps in colloidal photonic crystals and host–guest chemistry.


2007 ◽  
Vol 21 (16) ◽  
pp. 2761-2768 ◽  
Author(s):  
XIYING MA ◽  
ZHIJUN YAN

The size influence of silica microspheres on the photonic band gap (PBG) of three-dimensional face-centered-cubic (fcc) photonic crystals (PCs) is studied by means of colloidal photonic crystals, which are self-assembled by the vertical deposition technique. Monodispersed SiO 2 microspheres with a diameter of 220–320 nm are synthesized using tetraethylorthosilicate (TEOS) as a precursor material. We find that the PBG of the PCs shifts from 450 nm to 680 nm with silica spheres increasing from 220 to 320 nm. In addition, the PBG moves to higher photon energy when the samples are annealed in a temperature range of 200–700°C. The large shift results from the decrease in refraction index of silica due to moisture evaporation.


2007 ◽  
Vol 369 (1-2) ◽  
pp. 124-127 ◽  
Author(s):  
Yan-Ling Cao ◽  
Yong-Zheng Zhu ◽  
Zhi-Hui Li ◽  
Juan Ding ◽  
Jun-Song Liu ◽  
...  

2011 ◽  
Vol 236-238 ◽  
pp. 1811-1813
Author(s):  
Shuan Ming Li ◽  
Fu Ru Zhong ◽  
Zhen Hong Jia ◽  
Min Tian

We investigate the use of ellipse refractive index structure to enlarge photonic band-gap (PBG). The PBG structure was prepared on porous silicon with 10 unit cell. Each unit cell is consisting of 21 layers with the refractive index varying according to the envelope of the ellipse function. The width of this photonic band-gap is high to 451nm.


2011 ◽  
Vol 688 ◽  
pp. 90-94 ◽  
Author(s):  
Y.Q. Yang ◽  
P.D. Han ◽  
Y.P. Li ◽  
M.H. Dong ◽  
L.L. Zhang ◽  
...  

In this paper, polystyrene (PS) opals template, opal with a closed-packed face centered cubic (fcc) lattice, was prepared using vertical deposition method. The template provided void space for infiltration of Nb2O5 etc. PS colloidal nanospheres was face-centered-cubic (FCC) structure with its (111) planes parallel to the substrate. Finally, the transfer matrix method (TMM) was used to calculate photonic band-gap of PS opal and Nb2O5 inverse opal structure. The calculation results show that the photonic band-gap of Nb2O5 with inverse opal structure is wider than that of PS opals.


2007 ◽  
Vol 121-123 ◽  
pp. 179-182
Author(s):  
Shi Cheng Zhang ◽  
Jie Chen ◽  
Xing Guo Li

Nearly monodispersed SiO2 nanospheres, with different size and size standard deviation smaller than 5%, have been prepared by using batch/semibatch process. The SiO2 colloids were used as building blocks to self-assemble into the colloidal crystals, which photonic band gaps are close to the theoretical values, and can be modified by changing the size SiO2 nanospheres. With the increase of the size of SiO2 spheres, the photonic band gap red shift.


Sign in / Sign up

Export Citation Format

Share Document