Correlation between Photoreflectance Spectra and Electrical Characteristics of InP/GaAsSb Double Heterojunction Bipolar Transistors

2004 ◽  
Vol 829 ◽  
Author(s):  
Hiroki Sugiyama ◽  
Yasuhiro Oda ◽  
Haruki Yokoyama ◽  
Takashi Kobayashi ◽  
Masahiro Uchida ◽  
...  

ABSTRACTWe report a photoreflectance (PR) characterization of InP/GaAsSb double-heterojunction bipolar transistor (DHBT) epitaxial wafers grown by metal-organic vapor-phase epitaxy (MOVPE). The origin of the Franz-Keldysh oscillations (FKOs) in the PR spectra was identified by step etching of the samples. FKOs from the InP emitter region were observed in the wafer with low recombination forward current at the emitter-base (E/B) heterojunction. In contrast, they did not appear when recombination current was dominant. The absence of the FKOs from the emitter indicates the high concentration of the recombination centers at the E/B heterojunction. We have also measured PR spectra from InAlP/GaAsSb/InP DHBT wafers. Pronounced FKOs from InAlP emitter reflect the suppression of recombination at E/B heterojunctions.

1988 ◽  
Vol 144 ◽  
Author(s):  
M. A. Tischler ◽  
T. F. Kuech

ABSTRACTThe control of p-type dopants is very important in producing high performance minority carrier devices such as heterojunction bipolar transistors (HBT) and lasers. In this study, an electrical characterization technique is described which is very sensitive to the p-type dopant profile in a heterojunction. Both the placement of the dopant, i.e. the as-grown profile, and thermal diffusion effects have been investigated. The factors which control the initial placement and subsequent diffusion of the dopant species have been determined and used to produce device-quality GaAs/Al0.30Ga0.70As p+/n heterojunctions.


2009 ◽  
Vol 1195 ◽  
Author(s):  
Atsushi Koizumi ◽  
Kazuki Oshitanai ◽  
Jaesung Lee ◽  
Kazuo Uchida ◽  
Shinji Nozaki

AbstractThe reliability of InP/InGaAs heterojunction bipolar transistors (HBTs) with highly carbon-doped and zinc-doped InGaAs base layers grown by metal-organic vapor phase epitaxy has been investigated. The Raman spectroscopy reveals that the post-growth annealing for the carbon-doped InGaAs base improves the crystallinity to become as good as that of the zinc-doped InGaAs base. However, the photoluminescence intensity remains lower than that of the zinc-doped InGaAs even after the post-growth annealing. The current gains of the carbon- and zinc-doped base InP/InGaAs HBTs are 63 and 75, respectively, and they are affected by the base crystallinity. After the 15-min current stress test, the current gains decreased by 40 and 3% from the initial current gains for zinc- and carbon-doped base HBTs, respectively, are observed. These results indicate that the carbon-doped base HBT is much more reliable than that of zinc-doped base HBT, though it has a lower current gain.


2001 ◽  
Vol 17 (1) ◽  
pp. 87-92 ◽  
Author(s):  
Wen-Huei Chiou ◽  
Hsi-Jen Pan ◽  
Rong-Chau Liu ◽  
Chun-Yuan Chen ◽  
Chih-Kai Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document