Electronic Structure and Hydrogen Desorption in NaAlH4

2004 ◽  
Vol 837 ◽  
Author(s):  
S. Li ◽  
P. Jena ◽  
C. M. Araujo ◽  
R. Ahuja

ABSTRACTFirst principles calculations based on gradient corrected density functional theory are carried out to understand the electronic structure and mechanisms responsible for desorption of hydrogen from Ti doped and vacancy containing sodium-alanate (NaAlH4). The energy necessary to remove a hydrogen atom from Ti doped NaAlH4 is significantly smaller than that from pristine NaAlH4 irrespective of whether Ti substitutes the Na or the Al site. However, the presence of Na and Al vacancies is shown to play an even more important role: The removal of hydrogen associated with both Na and Al vacancies is found to be exothermic. It is suggested that this role of vacancies can be exploited in the design and synthesis of complex light metal hydrides suitable for hydrogen storage.

2006 ◽  
Vol 84 (2) ◽  
pp. 115-120 ◽  
Author(s):  
G Y Gao ◽  
K L Yao ◽  
Z L Liu

First-principles calculations of the electronic structure are performed for cubic BaTbO3 using the plane-wave pseudopotential method within the framework of density functional theory and using the generalized gradient approximation for the exchange-correlation potential. Our calculations show that cubic BaTbO3 is metallic, and that this metallic character is mainly governed by the Tb 4f electrons and the hybridization between the Tb 5d and O 2p states. From the analysis of the density of states, band structure, and charge density contour, we find that the chemical bonding between Tb and O is covalent while that between Ba and TbO3 is ionic. PACS Nos.: 71.15.Mb, 71.20.-b


2009 ◽  
Vol 1200 ◽  
Author(s):  
Markus E. Gruner

AbstractThis contribution reports static ionic displacements in ferromagnetic disordered Fe70Pd30 alloys obtained by relaxation of the ionic positions of a 108-atom supercell within the framework of density functional theory. Comparison with a simple statistical model based on Lennard-Jones pair interactions reveals that these displacements are significantly larger than can be explained by the different sizes of the elemental constituents. The discrepancies are presumably related to collective displacements of the Fe atoms. Corresponding distortions are experimentally observed for ordered Fe3Pt and predicted by first-principles calculations for all ordered Fe-rich L12 alloys with Ni group elements and originate from details of the electronic structure at the Fermi level.


2017 ◽  
Vol 19 (23) ◽  
pp. 15021-15029 ◽  
Author(s):  
Yusheng Wang ◽  
Nahong Song ◽  
Min Jia ◽  
Dapeng Yang ◽  
Chikowore Panashe ◽  
...  

First principles calculations based on density functional theory were carried out to study the electronic and magnetic properties of C2N nanoribbons (C2NNRs).


2013 ◽  
Vol 373-375 ◽  
pp. 1965-1969
Author(s):  
Kun Nan Qin ◽  
Ling Zhi Zhao ◽  
Yong Mei Liu ◽  
Fang Fang Li ◽  
Chao Yang Cui

The electronic structure and optical properties of Cu-doped SnS2with Sn-substituted content of 0, 12.5 and 37.5 at.% were successfully calculated by the first principles plane-wave pseudopotentials based on the density functional theory. It is found that the intermediate belts appear near the Fermi level and the energy band gap becomes narrower after the doping of the Cu atoms. The absorption peaks show a remarkable redshift and the absorption region broadens relatively after introducing acceptor impurity level. When Sn atoms of 37.5 at% were substituted by Cu, the optical absorption coefficient is significantly improved in the frequency range below 5.58 eV and over 8.13 eV.


2011 ◽  
Vol 216 ◽  
pp. 341-344 ◽  
Author(s):  
Qi Jun Liu ◽  
Zheng Tang Liu ◽  
Li Ping Feng

Electronic structure, effective masses and optical properties of monoclinic HfO2were studied using the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory (DFT). The calculated equilibrium lattice parameters are in agreement with the previous works. From the band structure, the effective masses and optical properties are obtained. The calculated band structure shows that monoclinic HfO2has indirect band gap and all of the effective masses of electrons and holes are less than that of a free electron. The peaks position distributions of imaginary parts of the complex dielectric function have been explained according to the theory of crystal-field and molecular-orbital bonding.


2017 ◽  
Vol 19 (42) ◽  
pp. 28928-28935 ◽  
Author(s):  
Ya Yang ◽  
Jihua Zhang ◽  
Shunbo Hu ◽  
Yabei Wu ◽  
Jincang Zhang ◽  
...  

First principles calculations based on density functional theory were performed to study the electronic structure and magnetic properties of β-Ga2O3 in the presence of cation vacancies.


2005 ◽  
Vol 884 ◽  
Author(s):  
Santanu Chaudhuri ◽  
James T Muckerman

AbstractPresence of ∼2-4 % Ti is critical for reversible hydrogenation/rehydrogenation in NaAlH4. We have investigated the probable catalytic role of Ti in this complex multi-step process. The present part of our study concentrates on the rehydrogenation reaction, i.e., the reverse reaction that forms NaAlH4 from its constituent binary hydrides. First principles calculations using density functional theory (DFT) show that a particular arrangement of Ti atoms on the surface of Al metal promotes the chemisorption of molecular hydrogen. We also present comparisons with existing experimental data (EXAFS and TEM) to support the existence of such an arrangement on the surface.


2021 ◽  
pp. X
Author(s):  
Hongbo TANG ◽  
Qiuyue LI ◽  
Jian ZHOU ◽  
Lihua XIAO ◽  
Ping PENG

Received 03 January 2020; accepted 17 June 2020 We have investigated the optical properties of La (0, 0.125, 0.250) doped YB6 by means of first-principles calculations within the framework of density functional theory. It was found that electronic and optical properties of YB6 crystals varied remarkably when Y atoms were replaced with La atoms. Furthermore, with increasing content of La in YB6 crystals from 12.5 % to 25 % reflectivity and absorption coefficient of near infrared light decreased obviously, while the transmittance was enhanced.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5589
Author(s):  
Sergei Piskunov ◽  
Aleksejs Gopejenko ◽  
Vladimir Pankratov ◽  
Inta Isakoviča ◽  
Chong-Geng Ma ◽  
...  

In this paper, the density functional theory accompanied with linear combination of atomic orbitals (LCAO) method is applied to study the atomic and electronic structure of the Ti3+ and Ti2+ ions substituted for the host Al atom in orthorhombic Pbnm bulk YAlO3 crystals. The disordered crystalline structure of YAlO3 was modelled in a large supercell containing 160 atoms, allowing simulation of a substitutional dopant with a concentration of about 3%. In the case of the Ti2+-doped YAlO3, compensated F-center (oxygen vacancy with two trapped electrons) is inserted close to the Ti to make the unit cell neutral. Changes of the interatomic distances and angles between the chemical bonds in the defect-containing lattices were analyzed and quantified. The positions of various defect levels in the host band gap were determined.


2019 ◽  
Vol 21 (28) ◽  
pp. 15767-15778
Author(s):  
Imad Belabbas ◽  
Laurent Pizzagalli ◽  
Joseph Kioseoglou ◽  
Jun Chen

First principles calculations, based on density functional theory, have been carried out to investigate the role of screw dislocations in the bulk n-type conductivity which is usually observed in indium nitride.


Sign in / Sign up

Export Citation Format

Share Document