Spontaneous Formation of Ridges on Patterned Mesas and Their Role in the Evolution of

2004 ◽  
Vol 854 ◽  
Author(s):  
Step Arrays ◽  
Kee-Chul Chang ◽  
Jack M. Blakely

ABSTRACTMesa structures fabricated on Si(111) surfaces have been found experimentally to develop step arrays with large spacing of the order of a micron or more after annealing at temperatures where sublimation becomes important. Ridges around the edges initially develop during annealing and form barriers to step motion before eventually breaking down. This produces an array of steps of the same sign with a few wide terraces. Computer simulations using one dimensional Burton, Cabrera and Frank (BCF) theory including attachment-detachment rates and step-step repulsion for this configuration show that the terraces evolve under different dynamics depending on the terrace widths. For large terrace widths, sublimation dominates the step dynamics and the Ehrlich-Schwoebel effect is negligible. Sinusoidal terrace width distributions result in this case. The experimentally measured step distribution has such a sinusoidal shape suggesting that the step dynamics is sublimation dominated on the mesas after ridge breakdown.

2004 ◽  
Vol 849 ◽  
Author(s):  
Kee-Chul Chang ◽  
Jack M. Blakely

AbstractMesa structures fabricated on Si(111) surfaces have been found experimentally to develop step arrays with large spacing of the order of a micron or more after annealing at temperatures where sublimation becomes important. Ridges around the edges initially develop during annealing and form barriers to step motion before eventually breaking down. This produces an array of steps of the same sign with a few wide terraces. Computer simulations using one dimensional Burton, Cabrera and Frank (BCF) theory including attachment-detachment rates and step-step repulsion for this configuration show that the terraces evolve under different dynamics depending on the terrace widths. For large terrace widths, sublimation dominates the step dynamics and the Ehrlich-Schwoebel effect is negligible. Sinusoidal terrace width distributions result in this case. The experimentally measured step distribution has such a sinusoidal shape suggesting that the step dynamics is sublimation dominated on the mesas after ridge breakdown.


2000 ◽  
Vol 62 (19) ◽  
pp. 13147-13152 ◽  
Author(s):  
Nira Shimoni ◽  
Shai Ayal ◽  
Oded Millo

2005 ◽  
Vol 121 (3-4) ◽  
pp. 361-372 ◽  
Author(s):  
C. Boldrighini ◽  
G. Cosimi ◽  
S. Frigio ◽  
A. Pellegrinotti

2001 ◽  
Vol 707 ◽  
Author(s):  
David Montiel ◽  
Judith Müller ◽  
Eugenia Corvera Poiré

ABSTRACTMotivated by the work of Li et al. [1], we have studied the strain induced morphological instability at the submonolayer coverage stage of heteroepitaxial growth on a vicinal substrate with regularly spaced steps. We have performed a linear stability analysis and determined for which conditions of coverage a flat front is unstable and for which conditions it is stable. For low coverages the instability will cause the front to break in an array of islands. Assuming that the fastest growing mode of the instability determines t he properties of the array, we make an estimation of the islands sizes and aspect ratios as well as an estimation of the separation length between islands of the array formed when the dominant mechanism for transport of matter is diffusion of particles along the growing front. These estimations are given as functions of the terrace width and coverage. Since these ones are experimentally controllable parameters, our results could be used to tailor the spontaneous formation of quantum nanostructures.


2002 ◽  
Vol 123 (1) ◽  
pp. 83-104 ◽  
Author(s):  
A. Alexeev ◽  
A. Goldshtein ◽  
M. Shapiro

1985 ◽  
Vol 107 (4) ◽  
pp. 523-526 ◽  
Author(s):  
S. H. Advani ◽  
J. S. Torok ◽  
J. K. Lee

Exact solutions for the one-dimensional problem of a compressible fluid having a time-dependent pressure at the source (fracture face) and displacing a compressible reservoir fluid are generated. Special solutions for various cases represented by step, step with constant slope front, and sinusoidal pressure variations at the fracture face are derived. Numerical results and trends for fluid interface motion are revealed for selected cases. The applicability of the presented solutions to hydraulic fracturing is discussed. In addition, response solutions for problems in reservoir mechanics, underground coal gasification, and nuclear waste management can be similarly investigated.


1983 ◽  
Vol 16 (6) ◽  
pp. 920-925 ◽  
Author(s):  
Robert Cook ◽  
Lawrence L. Livornese

1979 ◽  
Vol 50 (B3) ◽  
pp. 1822-1824 ◽  
Author(s):  
D. P. Landau ◽  
John Thomchick

Sign in / Sign up

Export Citation Format

Share Document