Transmutation and the Global Nuclear Energy Partnership

2006 ◽  
Vol 985 ◽  
Author(s):  
James Bresee

AbstractIn the January 2006 State of the Union address, President Bush announced a new Advanced Energy Initiative, a significant part of which is the Global Nuclear Energy Initiative. Its details were described on February 6, 2006 by the U.S. Secretary of Energy. In summary, it has three parts: (1) a program to expand nuclear energy use domestically and in foreign countries to support economic growth while reducing the release of greenhouse gases such as carbon dioxide. (2) an expansion of the U.S. nuclear infrastructure that will lead to the recycling of spent fuel and a closed fuel cycle and, through transmutation, a reduction in the quantity and radiotoxicity of nuclear waste and its proliferation concerns, and (3) a partnership with other fuel cycle nations to support nuclear power in additional nations by providing small nuclear power plants and leased fuel with the provision that the resulting spent fuel would be returned by the lessee to the lessor. The final part would have the effect of stabilizing the number of fuel cycle countries with attendant non-proliferation value. Details will be given later in the paper.

Author(s):  
Salomon Levy

The development of and support for small modular nuclear power plants (NPPs) is gaining strong momentum in USA. The reasons are that they could require reduced financing and shortened construction schedule. Also, they could address the reduced size need for electricity in some USA locations and, in particular, in developing foreign countries. However, the prevailing enthusiasm needs to be moderated until several potential obstacles are overcome. There are three principal USA obstacles: (1) the successful licensing and certification of the SMRs by the Nuclear Regulatory Commission (NRC) to confirm their safety; (2) SMRs ability to demonstrate that they can compete financially against less costly modular natural gas power plants or the limited purchase of electricity from new large light water reactors (LWRs); and (3) the need to work into the prevailing fuel cycle while not deteriorating spent fuel disposal or increasing proliferation. Clearly, Babcock & Wilcox’s and Nu Scale Power’s SMRs have the earliest chance for success because they would rely upon the present LWR regulatory and fuel cycle experience. Their main obstacle will be demonstrated costs from prototype plants and the willingness to accept fixed turnkey contracts for additional units. The more visionary SMRs such as GE-Hitachi PRISM or the Hyperion Power Generation smaller liquid metal closed fuel cycle reactors will have to overcome more difficult and lengthy regulatory assessments. Also, a complete fuel cycle infrastructure will need to be developed. Penetration of developing foreign countries will be the most difficult because it will demand the development and establishment of a nuclear safety infrastructure in those countries. The International Atomic Energy Agency (IAEA NG-G-31) has detailed the numerous actions and large time schedule and efforts to achieve an adequate safety culture. Also, several export licenses and monetary loans will be required. Furthermore, it will be necessary to overcome the lack of insurance for severe accidents and the anticipated USA refusal to accept domestic disposal of foreign High Level Waste (HLW). This means that government owned suppliers such as Russia have definite advantages over the USA private suppliers because of their willingness to provide loans and handling HLW. This paper first summarizes the power history growth of USA reactors and the recent momentum developed for USA SMRs; it is followed by available brief descriptions of USA LWR SMRs and some of their potential obstacles; more advanced USA SMRs designs and their potential difficulties come next; foreign applications are covered last and they are followed by a Conclusions section.


2017 ◽  
Vol 2017 ◽  
pp. 1-17
Author(s):  
Muhammad Minhaj Khan ◽  
Jae Min Lee ◽  
Jae Hak Cheong ◽  
Joo Ho Whang

With a view to providing supportive information for the decision-making on the direction of the future nuclear energy systems in Korea (i.e., direct disposal or recycling of spent nuclear fuel) to be made around 2020, quantitative studies on the spent nuclear fuel (SNF) including transuranic elements (TRUs) and a series of economic analyses were conducted. At first, the total isotopic inventory of TRUs in the SNF to be generated from all thirty-six units of nuclear power plants in operation or under planning is estimated based on the Korean government’s official plan for nuclear power development. Secondly, the optimized deployment strategies are proposed considering the minimum number of sodium cooled-fast reactors (SFRs) needed to transmute all TRUs. Finally, direct disposal and Pyro-SFR closed nuclear energy systems were compared using equilibrium economic model and considering reduction of TRUs and electricity generation as benefits. Probabilistic economic analysis shows that the assumed total generation cost for direct disposal and Pyro-SFR closed nuclear energy systems resides within the range of 13.60~33.94 mills/kWh and 11.40~25.91 mills/kWh, respectively. Dominant cost elements and the range of SFR overnight cost which guarantees the economic feasibility of the Pyro-SFR closed nuclear energy system over the direct disposal option were also identified through sensitivity analysis and break-even cost estimation.


Author(s):  
Marco Ciotti ◽  
Jorge L. Manzano ◽  
Vladimir Kuznetsov ◽  
Galina Fesenko ◽  
Luisa Ferroni ◽  
...  

Financial aspects, environmental concerns and non-favorable public opinion are strongly conditioning the deployment of new Nuclear Energy Systems across Europe. Nevertheless, new possibilities are emerging to render competitive electricity from Nuclear Power Plants (NPPs) owing to two factors: the first one, which is the fast growth of High Voltage lines interconnecting the European countries’ national electrical grids, this process being triggered by huge increase of the installed intermittent renewable electricity sources (Wind and PV); and the second one, determined by the carbon-free constraints imposed on the base load electricity generation. The countries that due to public opinion pressure can’t build new NPPs on their territory may find it profitable to produce base load nuclear electricity abroad, even at long distances, in order to comply with the European dispositions on the limitation of the CO2 emissions. In this study the benefits from operating at multinational level with the deployment of a fleet of PWRs and subsequently, at a proper time, the one of Lead Fast Reactors (LFRs) are analyzed. The analysis performed involves Italy (a country with a current moratorium on nuclear power on spite that its biggest utility operates NPPs abroad), and the countries from South East and Central East Europe potentially looking for introduction or expansion of their nuclear power programmes. According to the predicted evolution of their Gross Domestic Product (GDP) a forecast of the electricity consumption evolution for the present century is derived with the assumption that a certain fraction of it will be covered by nuclear electricity. In this context, evaluated are material balances for the front and the back end of nuclear fuel cycle associated with the installed nuclear capacity. A key element of the analysis is the particular type of LFR assumed in the scenario, characterized by having a fuel cycle where only fission products and the reprocessing losses are sent for disposition and natural or depleted uranium is added to fuel in each reprocessing cycle. Such LFR could be referred to as “adiabatic reactor”. Owing to introduction of such reactors a substantive reduction in uranium consumption and final disposal requirements can be achieved. Finally, the impacts of the LFR and the economy of scale in nuclear fuel cycle on the Levelized Cost of Electricity (LCOE) are being evaluated, for scaling up from a national to a multinational dimension, illustrating the benefits potentially achievable through cooperation among countries.


Author(s):  
Jean-Pierre Gros

AREVA has been running since decades nuclear reprocessing and recycling installations in France. Several industrial facilities have been built and used to this aim across the time. Following those decades and with the more and more precise monitoring of the impact of those installations, precise data and lessons-learned have been collected that can be used for the stakeholders of potential new facilities. China has expressed strong interest in building such facilities. As a matter of fact, the issue of accumulation of spent fuel is becoming serious in China and jeopardizes the operation of several nuclear power plants, through the running out of space of storage pools. Tomorrow, with the extremely high pace of nuclear development of China, accumulation of spent fuel will be unbearable. Building reprocessing and recycling installations takes time. A decision has to be taken so as to enable the responsible development of nuclear in China. Without a solution for the back end of its nuclear fuel cycle, the development of nuclear energy will face a wall. This is what the Chinese central government, through the action of its industrial CNNC, has well understood. Several years of negotiations have been held with AREVA. Everybody in the sector seems now convinced. However, now that the negotiation is coming to an end, an effort should be done towards all the stakeholders, sharing actual information from France’s reference facilities on: safety, security, mitigation measures for health protection (of the workers, of the public), mitigation measures for the protection of the environment. Most of this information is public, as France has since years promulgated a law on Nuclear transparency. China is also in need for more transparency, yet lacks means to access this public information, often in French language, so let’s open our books!


Author(s):  
Samuel Brinton ◽  
Akira Tokuhiro

According to current forecasts, nuclear power plant construction and nuclear-generated electricity production is projected to increase in the next half-century. This is likely due to the fact that nuclear energy is an ‘environmental alternative’ to fossil fuel plants that emit greenhouse gases (GHG). Nuclear power also has a much higher energy density output than other alternative energy sources such as solar, wind, and biomass energies. There is also growing consensus that processing of low- and high-level waste, LLW and HLW respectively, is a political issue rather than a technical challenge. Prudent implementation of a closed fuel cycle not only curbs build-up of GHGs, but can equally mitigate the need to store nuclear used fuel. The Global Nuclear Energy Partnership (GNEP) is promoting gradual integration of fuel reprocessing, and deployment of fast reactors (FRs) into the global fleet for long-term uranium resource usage. The use of mixed oxide (MOX) fuel burning Light Water Reactors (LWR) has also been suggested by fuel cycle researchers. This study concentrated on modeling the construction and decommissioning rates of six major facilities comprising the nuclear fuel cycle, as follows: (1) current LWRs decommissioned at 60-years service life, (2) new LWRs burning MOX fuel, (3) new (Gen’ III+) LWRs to replace units and/or be added to the fleet, (4) new FRs to be added to the fleet, (5) new reprocessing and MOX fuel fabrication facilities and (6) new LWR fuel fabrication facilities. Our initial work [1] focused on modeling the construction and decommissioning rates of reactors to be deployed. This is being followed with a ‘mass flow model’, starting from uranium ore and following it to spent forms. The visual dynamic modeling program Vensim was used to create a system of equations and variables to track the mass flows from enrichment, fabrication, burn-up, and the back-end of the fuel cycle. Sensible construction and deployment rates were benchmarked against recent reports and then plausible scenarios considered parametrically. The timeline starts in 2007 and extends in a preliminary model to 2057; a further mass flow model scenario continues until 2107. The scenarios considered provide estimates of the uranium ore requirements, quantities of LLW and HLW production, and waste storage volume needs. The results of this study suggest the number of reprocessing facilities necessary to stabilize and/or reduce recently reported levels of spent fuel inventory. Preliminary results indicate that the entire national spent fuel inventory produced over the next ∼50 years can be reprocessed by a reprocessing plant construction rate of less than 0.07 plants/year (small capacity) or less than 0.05 plants /year (large capacity). Any larger construction rate could reduce the spent fuel inventory destined for storage. These and additional results will be presented.


2018 ◽  
pp. 66-70
Author(s):  
O. V. Taran ◽  
O. G. Sandul

The nuclear energy use progressively becomes part of the life of every modern person, who more and more faces radioactive materials in medical institutions, in industry. Half of all electricity generated in Ukraine is generated by nuclear power plants. The peculiarities of the nuclear energy use generate appropriate rules for people dealing with radioactive materials. The article analyzes the standards of the Criminal Code of Ukraine, which provides for liability for acts related to the illegal handling of radioactive materials, for violation of the nuclear and radiation safety rules, violation of radiation safety requirements, the threat of theft of radioactive materials, the illicit manufacturing of a nuclear explosive device, abduction or capture of radioactive materials, attack on radioactive materials transportation means. The grounds and peculiarities for bringing to criminal liability have been reviewed, the range of persons who can be prosecuted has been defined. Conditions and grounds for exemption from criminal liability in the absence of a person's criminal intent to use radioactive material are considered. It has been demonstrated that the Criminal Code of Ukraine, by prohibiting certain actions on the illegal radioactive materials handling, ensures protection of the most important social relations and social benefits.


Author(s):  
Akbar Abbasi

Nuclear power plants to generates electric energy used nuclear fuel such as Uranium Oxide (UOX). A typical VVER−1000 reactor uses about 20–25 tons of spent fuel per year. The fuel transmutation of UOX fuel was evaluated by VISTA computer code. In this estimation the front end and back end components of fuel cycle was calculated. The front end of the cycle parameter are FF requirements, enrichment value requirements, depleted uranium amount, conversion requirements and natural uranium requirements. The back-end component is Spent Fuel (SF), Actinide Inventory (AI) and Fission Product (FP) radioisotopes.


2020 ◽  
Vol 6 ◽  
pp. 33
Author(s):  
Hamid Aït Abderrahim ◽  
Peter Baeten ◽  
Alain Sneyers ◽  
Marc Schyns ◽  
Paul Schuurmans ◽  
...  

Today, nuclear power produces 11% of the world's electricity. Nuclear power plants produce virtually no greenhouse gases or air pollutants during their operation. Emissions over their entire life cycle are very low. Nuclear energy's potential is essential to achieving a deeply decarbonized energy future in many regions of the world as of today and for decades to come, the main value of nuclear energy lies in its potential contribution to decarbonizing the power sector. Nuclear energy's future role, however, is highly uncertain for several reasons: chiefly, escalating costs and, the persistence of historical challenges such as spent fuel and radioactive waste management. Advanced nuclear fuel recycling technologies can enable full use of natural energy resources while minimizing proliferation concerns as well as the volume and longevity of nuclear waste. Partitioning and Transmutation (P&T) has been pointed out in numerous studies as the strategy that can relax constraints on geological disposal, e.g. by reducing the waste radiotoxicity and the footprint of the underground facility. Therefore, a special effort has been made to investigate the potential role of P&T and the related options for waste management all along the fuel cycle. Transmutation based on critical or sub-critical fast spectrum transmuters should be evaluated in order to assess its technical and economic feasibility and capacity, which could ease deep geological disposal implementation.


2020 ◽  
Vol 13 (2) ◽  
pp. 128-135
Author(s):  
X. V. Mishchenko ◽  
A. E. Uzhanov

The author estimates the impact of PR technologies on the development of nuclear power in Russia and in a number of foreign countries (USA, China, Japan, France). It is determined that as soon as at the stage of development of nuclear generation projects and other nuclear industry facilities, the use of public relations (PR), with a targeted impact on public opinion and interaction with target audiences (TA) at its core, has a significant impact on decision-making in favor of the construction of nuclear power plants, minimizes the protest behavior of the population. It is shown that the advantages of nuclear power among alternative energy sources for strengthening the socio-economic potential of states and increasing their environmental well-being are most clearly, quickly and effectively disclosed through using public relations tools. PR enables to form an adequate and correct understanding of the physical and chemical foundations of nuclear power engineering, the main threats and systems for their minimization or complete elimination at the conceptual, socio-psychological and socio-logical levels, as well as to form, in terms of specific objects and tools, the technological and organizational facilities for the development of nuclear energy projects both in Russia and in foreign countries. The activities of foreign and Russian companies aimed at ensuring loyal public opinion in relation to nuclear projects are critically described and analytically compared. The chronological framework covers the recent period: from the beginning of the 2000s to 2020. This period is noted as the most significant for the development of nuclear power in the world. Statistical data on changes in the attitude of the public in different countries to the prospects for the development of nuclear energy after the Chernobyl and Fukushima-1 disasters are presented. It is concluded that it is PR in its integrated application that contributes to government decision-making and public support in the construction of nuclear power plants in Russia and abroad.


2016 ◽  
Vol 11 (sp) ◽  
pp. 789-797
Author(s):  
Kami Seo ◽  
◽  
Tadahiro Motoyoshi ◽  
Yasunobu Maeda ◽  
◽  
...  

Quake-induced accident of Fukushima nuclear power plant in 2011 triggered heated argument about the country’s energy policy in Japan. Although many people recognized the risk of nuclear energy use, they did not necessarily support the option of abandoning the technology for the near future. This paper focuses on how people perceive risks associated with and without nuclear power generation and how perceived risks affect their opinion. We conducted questionnaire survey targeting 18–20 year old university students, the stakeholders in the future. The survey was implemented in 2013–2014 when none of Japan’s nuclear power plants was in active use. Three quarters of the respondents answered that a future with nuclear power generation was more realistic than without it. The aspects dividing the two groups, i.e., respondents who expect a future with or without nuclear energy use were their evaluations of three themes: (1) the feasibility of renewable energy sources, (2) the impacts in the safety of developing nations’ nuclear power generation, and (3) the difficulty in gaining the acceptance of residents near the power plants. Meanwhile, both groups above were similarly positive about technological innovation, and were similarly and strongly negative about developing safety management.


Sign in / Sign up

Export Citation Format

Share Document