Thin Polycrystalline Silicon Solar Cells

MRS Bulletin ◽  
1993 ◽  
Vol 18 (10) ◽  
pp. 33-37 ◽  
Author(s):  
Allen M. Barnett ◽  
Robert B. Hall ◽  
James A. Rand

Solar cells formed with thin silicon active layers (<100 μm thick) offer advantages over thick ingot-based devices. The advantages come in two forms: the first is the potential for higher conversion efficiency than that of conventional thick devices, and the second is a reduction in material requirements. The use of thin polycrystalline silicon for solar cells offers the potential of capturing the high performance of crystalline silicon while achieving the potential low cost of thin films. Experimental and theoretical studies initially uncovered the issues of grain size and thickness as limiting factors. Subsequent work added the issue of back-surface passivation. This article addresses the conditions required for the successful development of polycrystalline silicon into a high efficiency, low-cost, terrestrial product.

1996 ◽  
Vol 426 ◽  
Author(s):  
Robert B. Hall ◽  
Allen M. Barnett ◽  
Jeff E. Cotter ◽  
David H. Ford ◽  
Alan E. Ingram ◽  
...  

AbstractThin, polycrystalline silicon solar cells have the potential for the realization of a 15%, lowcost photovoltaic product. As a photovoltaic material, polycrystalline material is abundant, benign, and electrically stable. The thin-film polycrystalline silicon solar cell design achieves high efficiency by incorporating techniques to enhance optical absorption, ensure electrical confinement, and minimize bulk recombination currents. AstroPower's approach to a thin-film polycrystalline silicon solar cell technology is based on the Silicon-Film™ process, a continuous sheet manufacturing process for the growth of thin films of polycrystalline silicon on low-cost substrates. A new barrier layer and substrate have been developed for advanced solar cell designs. External gettering with phosphorus has been employed to effect significant improvements leading to effective minority carrier diffusion lengths greater than 250 micrometers in the active silicon layer. Light trapping has been observed in 60-micrometer thick films of silicon grown on the new barrier-coated substrate. An efficiency of 12.2% in a 0.659 cm2 solar cell has been achieved with the advanced structure.


2016 ◽  
Vol 34 (1) ◽  
pp. 94-100 ◽  
Author(s):  
L. Remache ◽  
T. Nychyporuk ◽  
N. Guermit ◽  
E. Fourmond ◽  
A. Mahdjoub ◽  
...  

AbstractThe improvement of optical confinement on the back crystalline silicon solar cell is one of the factors leading to its better performance. Porous silicon (PS) layer can be used as a back reflector (BR) in solar cells. In this work, single layers of porous silicon were grown by electrodeposition on a single crystalline silicon substrate. The measurement of the total reflectivity (RT) on Si/PS surface showed a significant improvement in optical confinement compared to that measured on Si/standard Al back surface field (BSF). The internal reflectivity (RB) extracted from total reflectivity measurements achieved 86 % for the optimized single PS layer (92 nm thick layer with 60 % porosity) in the wavelength range between 950 and 1200 nm. This improvement was estimated as more than 17 % compared to that measured on the surface of Si/BSF Al contact. To improve the stability and passivation properties of PS layer BR, silicon nitride layer (SiNx) was deposited by PECVD on a PS layer. The maximum measured total reflectivity for PS/SiNx achieved approximately 56 % corresponding to an improved RBof up to 83 %. The PS formation process in combination with the PECVD SiNx, can be applied in the photovoltaic cell technology and offer a promising technique to produce high-efficiency and low-cost c-Si solar cells.


2015 ◽  
Vol 54 (8S1) ◽  
pp. 08KD18 ◽  
Author(s):  
Hyunju Lee ◽  
Keigo Ueda ◽  
Yuya Enomoto ◽  
Koji Arafune ◽  
Haruhiko Yoshida ◽  
...  

2014 ◽  
Author(s):  
H. Lee ◽  
N. Sawamoto ◽  
K. Ueda ◽  
Y. Enomoto ◽  
K. Arafune ◽  
...  

Author(s):  
Yutaka Hayashi ◽  
Tadashi Saitoh ◽  
Kunio Hane ◽  
Ryuichi Shimokawa ◽  
Toshihide Takeshita

2013 ◽  
Vol 724-725 ◽  
pp. 151-155
Author(s):  
Peng Wang ◽  
Xian Fang Gou ◽  
Wei Tao Fan ◽  
Chen Cai Sun

In order to improving the conversion efficiency of polycrystalline silicon solar cells, progressive SiNx thin films were deposited on the surface via Roth&Rau plasma-enhanced chemical vapor deposition method. The effects of progressive SiNx thin films, such as surface passivation, anti-reflection, and electrical performance were systematically investigated. Compared with monolayer films, progressive SiNx thin films have better anti-reflective properties in the wavelength range of 300-500 nm, resulting in improvement of the short wavelength absorption of the crystalline silicon solar cells. Moreover, the bottom of progressive SiNx thin films with high refractive index enhances the surface passivation. Thus, higher open-circuit voltage and fill factor could be obtained by this technique.


Sign in / Sign up

Export Citation Format

Share Document