scholarly journals Optical Gain Spectra in InGaN/GaN Quantum Wells with the Compositional Fluctuations

1999 ◽  
Vol 4 (S1) ◽  
pp. 112-117 ◽  
Author(s):  
Takeshi Uenoyama

The compositional fluctuations of the In content were found in InGaN/GaN quantum wells and it caused the localized states by the potential fluctuation. We have evaluated the optical gain of GaN based quantum well structures with localized states. The localized states are treated as the subband states of the quantum disk-like dots in the well. It was found that the inhomogeneous broadening played an important role in the optical gain and that it should be reduced to use the benefit of the localized states for laser oscillations.

1998 ◽  
Vol 537 ◽  
Author(s):  
Takeshi Uenoyama

The compositional fluctuations of the In content were found in InGaN/GaN quantum wells and it caused the localized states by the potential fluctuation. We have evaluated the optical gain of GaN based quantum well structures with localized states. The localized states are treated as the subband states of the quantum disk-like dots in the well. It was found that the inhomogeneous broadening played an important role in the optical gain and that it should be reduced to use the benefit of the localized states for laser oscillations.


1997 ◽  
Vol 482 ◽  
Author(s):  
Takeshi Uenoyama

AbstractWe have evaluated the optical gain of GaN/AlGaN quantum well structures with localized states, taking into account the Coulomb interaction. The localized states axe introduced in the well as quantum dot-like subband states. We have used the temperature Green's function formalism to treat the many-body effects and have found a new excitonic enhancement of the optical gain involved the localized states. This enhancement is stronger than the conventional Coulomb enhancement. It might play an important role to reduce the threshold carrier density.


2003 ◽  
Vol 798 ◽  
Author(s):  
Madalina Furis ◽  
Alexander N. Cartwright ◽  
Hong Wu ◽  
William J. Schaff

ABSTRACTThe need for efficient UV emitting semiconductor sources has prompted the study of a number of heterostructures of III-N materials. In this work, the temperature dependence of the photoluminescence (PL) properties of UV-emitting GaN/AlN multiple quantum well (MQW) heterostructures were investigated in detail. In all samples studied, the structure consisted of 20 GaN quantum wells, with well widths varying between 7 and 15 Å, clad by 6nm AlN barriers, grown on top of a thick AlN buffer that was deposited on sapphire by molecular beam epitaxy. The observed energy corresponding to the peak of the emission spectrum is in agreement with a model that includes the strong confinement present in these structures and the existence of the large built-in piezoelectric field and spontaneous polarization present inside the wells. The observed emission varies from 3.5 eV (15 Å well) to 4.4 eV (7 Å well). Two activation energies associated with the photoluminescence quenching are extracted from the temperature dependence of the time-integrated PL intensity. These activation energies are consistent with donor and acceptor binding energies and the PL is dominated by recombination involving carriers localized on donor and/or acceptor states.Moreover, the temperature dependence of the full width at half-maximum (FWHM) of the PL feature indicates that inhomogeneous broadening dominates the spectrum at all temperatures. For the 15 and 13 Å wells, we estimate that the electron-phonon interaction is responsible for less than 30% of the broadening at room temperature. This broadening is negligible in the 9 Å wells over the entire temperature range studied. Well width fluctuations are primarily responsible for the inhomogeneous broadening, estimated to be of the order of 250meV for one monolayer fluctuation in well width.


2007 ◽  
Vol 31 ◽  
pp. 95-97
Author(s):  
B. Dong ◽  
W.J. Fan ◽  
Y.X. Dang

The band structures and optical gain spectra of GaAsSbN/GaAs compressively strained quantum well (QW) were studied using 10-band k.p approach. We found that a higher Sb and N composition in the quantum well and a thicker well give longer emitting wavelength. The result also shows a suitable combination of Sb and N composition, and QW thickness can achieve 1.3 μm lasing. And, the optical gain spectra with different carrier concentrations will be obtained.


2005 ◽  
Vol 475-479 ◽  
pp. 1685-1688 ◽  
Author(s):  
Hongxing Gai ◽  
Jun Deng ◽  
Jian Jun Li ◽  
Guang Di Shen ◽  
Jianxin Chen

According to the Harrison’s model, the level change of conduction and valence bands caused by the strain of AlInGaAs/AlGaAs quantum well (QW) was analyzed firstly. The energy level of the electron and hole in the AlInGaAs/AlGaAs strained and GaAs/AlGaAs unstrained QW were calculated, respectively. In addition, taking the lorentzian function, the linear gain of the two QWs were calculated and discussed. Contrast the gain performance of GaAs/AlGaAs QW with that of AlyInxGa1-x-yAs/AlGaAs QW, it can be found that the strained AlyInxGa1-x-yAs/AlGaAs QW material has more promising optical gain than that of the GaAs/AlGaAs QW.


2015 ◽  
Vol 74 ◽  
pp. 191-197 ◽  
Author(s):  
Said Dehimi ◽  
Aissat Abdelkader ◽  
Djamel Haddad ◽  
Lakhdar Dehimi

Sign in / Sign up

Export Citation Format

Share Document