Reversible control of intrinsic shear strength of a ZnO single crystal through electron-beam-induced hole state

Author(s):  
Hiroyuki Hirakata ◽  
Kyohei Sano ◽  
Takahiro Shimada
Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2552 ◽  
Author(s):  
Uwe Gohs ◽  
Michael Mueller ◽  
Carsten Zschech ◽  
Serge Zhandarov

Continuous glass fiber-reinforced polypropylene composites produced by using hybrid yarns show reduced fiber-to-matrix adhesion in comparison to their thermosetting counterparts. Their consolidation involves no curing, and the chemical reactions are limited to the glass fiber surface, the silane coupling agent, and the maleic anhydride-grafted polypropylene. This paper investigates the impact of electron beam crosslinkable toughened polypropylene, alkylene-functionalized single glass fibers, and electron-induced grafting and crosslinking on the local interfacial shear strength and critical energy release rate in single glass fiber polypropylene model microcomposites. A systematic comparison of non-, amino-, alkyl-, and alkylene-functionalized single fibers in virgin, crosslinkable toughened and electron beam crosslinked toughened polypropylene was done in order to study their influence on the local interfacial strength parameters. In comparison to amino-functionalized single glass fibers in polypropylene/maleic anhydride-grafted polypropylene, an enhanced local interfacial shear strength (+20%) and critical energy release rate (+80%) were observed for alkylene-functionalized single glass fibers in electron beam crosslinked toughened polypropylene.


2014 ◽  
Vol 89 (20) ◽  
Author(s):  
Wenhui Liu ◽  
Wei Xie ◽  
Wenping Guo ◽  
Dan Xu ◽  
Tao Hu ◽  
...  

2013 ◽  
Vol 1538 ◽  
pp. 405-410
Author(s):  
Shaoping Wang ◽  
Aneta Kopec ◽  
Andrew G. Timmerman

ABSTRACTA ZnO single crystal is a native substrate for epitaxial growth of high-quality thin films of ZnO-based Group II-oxides (e.g. ZnO, ZnMgO, ZnCdO) for variety of devices, such as UV and visible-light emitting diodes (LEDs), UV laser diodes and solar-blind UV detectors. Currently, commercially available ZnO single crystal wafers are produced using a hydrothermal technique. The main drawback of hydrothermal growth technique is that the ZnO crystals contain large amounts of alkaline metals, such as Li and K. These alkaline metals are electrically active and hence can be detrimental to device performances. In this paper, results from a recently developed novel growth technique for ZnO single crystal boules are presented. Lithium-free ZnO single crystal boules of up to 1 inch in diameter was demonstrated using the novel technique. Results from crystal growth and materials characterization will be discussed.


2022 ◽  
Vol 93 (1) ◽  
pp. 015006
Author(s):  
Xiaolong Zhao ◽  
Ming Ye ◽  
Zhi Cao ◽  
Danyang Huang ◽  
Tingting Fan ◽  
...  

2018 ◽  
Vol 6 (2) ◽  
pp. 026203 ◽  
Author(s):  
Song Yin ◽  
Gou Jie ◽  
Yang Yi-tao ◽  
Ding Zhao-nan ◽  
Zhang Shen-xia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document