Influence of composition of β-TCP and borate bioglass scaffolds on cell proliferation of adipose tissue-derived mesenchymal stem cells: osteogenic differentiation

MRS Advances ◽  
2021 ◽  
Author(s):  
N. Jaramillo ◽  
A. Moreno ◽  
R. Sánchez ◽  
V. Ospina ◽  
A. Peláez-Vargas ◽  
...  
2007 ◽  
Vol 13 (10) ◽  
pp. 2495-2503 ◽  
Author(s):  
M. Knippenberg ◽  
M.N. Helder ◽  
J.M.A. de Blieck-Hogervorst ◽  
P.I.J.M. Wuisman ◽  
J. Klein-Nulend

2017 ◽  
Vol 69 (6) ◽  
pp. 1573-1580
Author(s):  
K.P. Oliveira ◽  
A.M.S. Reis ◽  
A.P. Silva ◽  
C.L.R. Silva ◽  
A.M. Goes ◽  
...  

ABSTRACT The objective was to evaluate the in vitro effect of prolactin in osteogenic potential of adipose tissue-derived mesenchymal stem cells (ADSCs) in female rats. ADSCs were cultured in osteogenic medium with and without the addition of prolactin and distributed into three groups: 1) ADSCs (control), 2) ADSCs with addition of 100ng/mL of prolactin and 3) ADSCs with addition of 300ng/mL of prolactin. At 21 days of differentiation, the tests of MTT conversion into formazan crystals, percentage of mineralized nodules and cells per field and quantification of genic transcript for alkaline phosphatase, osteopontin, osteocalcin, bone sialoprotein, BMP-2 and collagen I by real-time RT-PCR were made. The addition of prolactin reduced the conversion of MTT in group 3 and increased the percentage of cells per field in the groups 2 and 3, however without significantly increasing the percentage of mineralized nodules and the expression of alkaline phosphatase, osteopontin, osteocalcin, bone sialoprotein, BMP-2 and collagen I. In conclusion, the addition of prolactin in concentrations of 100ng/mL and 300ng/mL does not change the osteogenic differentiation to the ADSCs of female rats despite increase in the cellularity of the culture.


2019 ◽  
Vol 121 (3) ◽  
pp. 344-353 ◽  
Author(s):  
Mohamed I. Elashry ◽  
Shumet T. Gegnaw ◽  
Michele C. Klymiuk ◽  
Sabine Wenisch ◽  
Stefan Arnhold

2019 ◽  
Vol 107 (6) ◽  
pp. 1284-1293 ◽  
Author(s):  
Zohreh Karimi ◽  
Ehsan Seyedjafari ◽  
Fatemeh Sadat Mahdavi ◽  
Seyed Mahmoud Hashemi ◽  
Arash Khojasteh ◽  
...  

2011 ◽  
Vol 33 (6) ◽  
pp. 1257-1264 ◽  
Author(s):  
Abbas Shafiee ◽  
Ehsan Seyedjafari ◽  
Masoud Soleimani ◽  
Naser Ahmadbeigi ◽  
Peyman Dinarvand ◽  
...  

2020 ◽  
Vol 10 (6) ◽  
pp. 868-873
Author(s):  
Shengxiang Huang ◽  
Haibo Mei ◽  
Rongguo He ◽  
Kun Liu ◽  
Jin Tang ◽  
...  

The α-calcitonin gene-related peptide (α-CGRP) regulates bone metabolism and has potential applications in enhancing bone remodeling in vivo. However, α-CGRP's role in bone marrow mesenchymal stem cells (BMSCs) osteogenic differentiation remain unclear. Rat BMSCs were separated into control group, α-CGRP group and α-CGRP siRNA group, in which BMSCs were transfected with α-CGRP plasmid and α-CGRP siRNA respectively followed by analysis of α-CGRP level by real time PCR and ELISA, cell proliferation by MTT assay, Caspase 3 activity, ALP activity, formation of calcified nodules by alizarin red staining, Smad1 and Smad7 level by Western blot and Runx2 by real time PCR. αCGRP transfection into BMSCs significantly up-regulated CGRP, which could promote cell proliferation, inhibit Caspase 3 activity, promote ALP activity, increase calcified nodules formation and upregulate Smad1, Smad7 and Runx2 compared to control (P < 0.05); transfection of αCGRP siRNA significantly down-regulated CGRP in BMSCs, inhibited cell proliferation, promoted Caspase 3 activity, inhibited ALP activity, inhibited calcified nodules formation and downregulate Smad1, Smad7 and Runx2 (P < 0.05). αCGRP overexpression promotes the Smad/Runx2 signaling, which in turn promotes BMSCs proliferation and osteogenesis. Decreased αCGRP level inhibits Smad/Runx2 signaling, promotes BMSCs apoptosis, inhibits proliferation and osteogenic differentiation.


2019 ◽  
Vol 9 (10) ◽  
pp. 1429-1434
Author(s):  
Qing Yang ◽  
Cheng Li ◽  
Manli Yan ◽  
Chunhua Fang

Bone marrow mesenchymal stem cells (BMSCs) can be differentiated into different types of cells. SOX9 involves in the development and progression of various diseases. Our study aims to assess SOX9's effect on osteogenic differentiation of BMSCs and its related regulatory mechanisms. Rat BMSCs were isolated and randomly divided into control group, SOX9 group and SOX9 siRNA group, which was transfected with pcDNA-SOX9 plasmid or SOX9 siRNA respectively followed by analysis of SOX9 expression by Real time PCR, cell proliferation by MTT assay, Caspase3 and ALP activity, GSK-3β expression and Wntβ/Catenin Signaling pathway protein expression by Western blot, and expression of osteogenic genes Runx2 and BMP-2 by Real time PCR. Transfection of pcDNA-SOX9 plasmid into BMSCs significantly inhibited cell proliferation, promoted Caspase3 activity, decreased ALP activity and downregulated Runx2 and BMP-2, increased GSK-3β expression and decreased Wntβ/Catenin expression protein expression (P< 0.05). SOX9 siRNA transfection significantly promoted cell proliferation, inhibited Caspase3 activity, increased ALP activity and upregulated Runx2 and BMP-2, downregulated GSK-3β and increased Wntβ/Catenin expression. SOX9 regulates BMSCs proliferation and osteogenic differentiation through Wntβ/Catenin signaling pathway.


2010 ◽  
Vol 19 (12) ◽  
pp. 1843-1853 ◽  
Author(s):  
Meindert J. Crop ◽  
Carla C. Baan ◽  
Sander S. Korevaar ◽  
Jan N.M. Ijzermans ◽  
Willem Weimar ◽  
...  

2018 ◽  
Vol 117 ◽  
pp. 45-53 ◽  
Author(s):  
Mohamed I. Elashry ◽  
Nadine Baulig ◽  
Manuela Heimann ◽  
Caroline Bernhardt ◽  
Sabine Wenisch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document