scholarly journals Consciousness as Presence: An Exploration of the Illusion of Self

2013 ◽  
Vol 30 (1) ◽  
pp. 113-128
Author(s):  
Charles Kedric Fink

Buddhism teaches that ‘self’ as a substantial, enduring entity is an illusion. But for self to be an illusion there must be something in our experience that is misinterpreted as self. What is this? The notion of an experiential self plays an important role in phenomenological investigations of conscious experience. Does the illusion of self consist in mistaking a purely experiential self for a substantial self? I argue against this and locate the source of the illusion in time-consciousness. It is the essence of consciousness to flow, but the flow of consciousness presupposes an experiential present. The experiential present — an abiding sense of ‘now’ — is the dimension through which experiences are experienced as streaming. It is this, I argue, that is misinterpreted as an enduring self. I support my account by arguing that the synchronic and diachronic unity of consciousness can be accounted for in terms of impersonal, temporal experience, and that conceiving of consciousness as the presence-dimension rather than as the I-dimension affords a solution to the brain-bisection puzzle.

2016 ◽  
Vol 33 (S1) ◽  
pp. S32-S32
Author(s):  
G. Stanghellini

The integrity of time consciousness is the condition of possibility of the identity through time of an object of perception as well as of the person who perceives it. I will present our findings about abnormal time experience (ATE) in people with schizophrenia. These data may support the following hypothesis: if the continuity of temporal experience disintegrates (of which ATE are experiential manifestations), overarching meaningful units are no longer available, thereby creating temporal gaps, e.g., in one's stream of consciousness. In some cases, thoughts that are no longer experienced as embedded in one's stream of thoughts are experienced as, e.g., thought interferences, blockages, insertion or withdrawal. These symptoms cannot be explained as a mere disturbance of attention or comprehension at the level of semantic combinations. Rather, the disturbance could be searched for at a more basic level where the temporal coherence of conscious awareness is constituted. A failure of the constitutive temporal synthesis may create micro-gaps of conscious experience. In the most severe cases, thoughts or other mental phenomena that are no longer embedded in the continuity of basic self-experience may appear in consciousness as “erratic blocks” and experienced as being inserted, or, if further externalized, as auditory hallucinations (“voices”). This coheres with the hypothesis that a breakdown of temporality may be bound up with the breakdown of prereflexive self-awareness.Disclosure of interestThe author has not supplied his declaration of competing interest.


Author(s):  
Anil K. Seth

Consciousness is perhaps the most familiar aspect of our existence, yet we still do not know its biological basis. This chapter outlines a biomimetic approach to consciousness science, identifying three principles linking properties of conscious experience to potential biological mechanisms. First, conscious experiences generate large quantities of information in virtue of being simultaneously integrated and differentiated. Second, the brain continuously generates predictions about the world and self, which account for the specific content of conscious scenes. Third, the conscious self depends on active inference of self-related signals at multiple levels. Research following these principles helps move from establishing correlations between brain responses and consciousness towards explanations which account for phenomenological properties—addressing what can be called the “real problem” of consciousness. The picture that emerges is one in which consciousness, mind, and life, are tightly bound together—with implications for any possible future “conscious machines.”


2010 ◽  
Author(s):  
Αικατερίνη Χαραλαμποπούλου

In this study I have attempted to present a linguistic investigation into the nature and structure of time, based on proposals developed in Evans (2004). Accordingly, as linguistic structure and particularly patterns of elaboration reflect conceptual structure conventionalized into a format encodable in language, this study presents an examination of the human conceptual system for time. Indeed, an examination of the ways in which language lexicalizes time provides important insights into the nature and organization of time. That is, given the widely held assumption that semantic structure derives from and reflects, at least partially, conceptual structure, language offers a direct way of investigating the human conceptual system. However, how time is realized at the conceptual level, that is, how we represent time as revealed by the way temporal concepts are encoded in language, does not tell the whole story, if we are to uncover the nature and structure of time. Research in cognitive science suggests that phenomenological experience and the nature of the external world of sensory experience to which subjective experience constitutes a response, give rise to our pre- conceptual experience of time. In other words, as Evans (2004) says, time is not restricted to one particular layer of experience but it rather “constitutes a complex range of phenomena and processes which relate to different levels and kinds of experience” (ibid.: 5). Accordingly, while my focus in this study is on the temporal structure, which is to say the organization and structuring of temporal concepts, at the conceptual level, I have also attempted to present an examination of the nature of temporal experience at the pre-conceptual level (prior to representation in conceptual structure). In this regard, I have examined the results of research from neuroscience, cognitive psychology and social psychology. More specifically and with respect to evidence from neuroscience, it is suggested that temporal experience is ultimately grounded in neurological mechanisms necessary for regulating and facilitating perception (e.g., Pöppel 1994). That is, perceptual processing is underpinned by the occurrence of neurologically instantiated temporal intervals, the perceptual moments, which facilitate the integration of sensory information into coherent percepts. As we have seen, there is no single place in the brain where perceptual input derived from different modalities, or even information from within the same modality, can be integrated. In other words, there is no one place where spatially distributed sensory information associated with the distinct perceptual processing areas of the brain, are integrated in order to produce a coherent percept. Rather, what seems to be the case is that the integration of sensory information into coherent percepts is enabled by the phenomena of periodic perceptual moments. Such a mechanism enables us to perceive, in that the nature of our percepts are in an important sense ‘constructed’. Put another way, perception is a kind of constructive process which updates successive perceptual information to which an organism has access. The updating occurs by virtue of innate timing mechanisms, the perceptual moments, which occur at all levels of neurological processing and range from a fraction of second up to an outer limit of about three seconds. It is these timing mechanisms which form the basis of our temporal experience. As Gell says, “perception is intrinsically time-perception, and conversely, time-perception, or internal time-consciousness, is just perception itself...That is to say, time is not something we encounter as a feature of contingent reality, as if it lay outside us, waiting to be perceived along with tables and chairs and the rest of the perceptible contents of the universe. Instead, subjective time arises as inescapable feature of the perceptual process itself, which enters into the perception of anything whatsoever” (1992: 231). In other words, our experience of time is a consequence of the various innate ‘timing mechanisms' in the brain which give rise to a range of perceptual moments, which are in turn necessary for and underpin perceptual processing. In this way, time exists into the experience of everything as it is fundamental to the way in which perceptual process operates. […]


Metaphysica ◽  
2018 ◽  
Vol 19 (1) ◽  
pp. 137-155
Author(s):  
Sean Allen-Hermanson

Abstract I criticize Bourget’s intuitive and empirical arguments for thinking that all possible conscious states are underived if intentional. An underived state is one of which it is not the case that it must be realized, at least in part, by intentional states distinct from itself. The intuitive argument depends upon a thought experiment about a subject who exists for only a split second while undergoing a single conscious experience. This, however, trades on an ambiguity in “split second.” Meanwhile, Bourget’s empirical argument is question-begging. My critique also has implications for debates about the essential temporality and unity of consciousness experience, and, phenomenal atomism.


2018 ◽  
pp. 195-236
Author(s):  
Georg Northoff

Consciousness is neuronal as it is based on the brain and its neural activity. This is what neuroscience tell us citing strong empirical evidence. At the same time, consciousness is ecological in that it extends beyond the brain to body and world – this is what philosophers tell us when they invoke concepts like embodiment, embeddedness, extendedness, and enactment. Is consciousness neuronal or ecological? This amounts to what I describe as “argument of inclusion”: do we need to include body and world in our account of the brain and how is that very same inclusion important for consciousness? I argue that the “spatiotemporal model” of consciousness can well address the “argument of inclusion” by linking and integrating both neuronal and ecological characterizations of consciousness. I demonstrate various data showing how the brain’s spontaneous activity couples and aligns itself to the spatiotemporal structure in the ongoing activities of both body and world. That amounts to a specific spatiotemporal mechanism of the brain that I describe as ‘spatiotemporal alignment’. Conceptually, such ‘spatiotemporal alignment’ corresponds to “body-brain relation” and “world-brain relation”, as I say. World-brain relation and body-brain relation allow for spatiotemporal relation and integration between the different spatiotemporal scales or ranges of world, body, and brain with all three being spatiotemporally aligned and nested within each other. Based on various empirical findings, I argue that such spatiotemporal nestedness between world, body, and brain establishes a “neuro-ecological continuum” and world-brain relation. Both neuro-ecological continuum and world-brain relation are here understood in an empirical sense and can be regarded as necessary condition of possible consciousness, i.e., neural predisposition of consciousness (NPC) (as distinguished from the neural correlates of consciousness/NCC). In sum, the spatiotemporal model determines consciousness by “neuro-ecological continuum” and world-brain relation (with body-brain relation being a subset). Taken in such sense, the spatiotemporal model can well address the “argument of inclusion”. We need to include body and world in our account of the brain in terms of “neuro-ecological continuum” and world-brain relation since otherwise, due to their role as NPC, consciousness remains impossible.


Author(s):  
Joseph Levine

There are two basic philosophical problems about colour. The first concerns the nature of colour itself. That is, what sort of property is it? When I say of the shirt that I am wearing that it is red, what sort of fact about the shirt am I describing? The second problem concerns the nature of colour experience. When I look at the red shirt I have a visual experience with a certain qualitative character – a ‘reddish’ one. Thus colour seems in some sense to be a property of my sensory experience, as well as a property of my shirt. What sort of mental property is it? Obviously, the two problems are intimately related. In particular, there is a great deal of controversy over the following question: if we call the first sort of property ‘objective colour’ and the second ‘subjective colour’, which of the two, objective or subjective colour, is basic? Or do they both have an independent ontological status? Most philosophers adhere to the doctrine of physicalism, the view that all objects and events are ultimately constituted by the fundamental physical particles, properties and relations described in physical theory. The phenomena of both objective and subjective colour present problems for physicalism. With respect to objective colour, it is difficult to find any natural physical candidate with which to identify it. Our visual system responds in a similar manner to surfaces that vary along a wide range of physical parameters, even with respect to the reflection of light waves. Yet what could be more obvious than the fact that objects are coloured? In the case of subjective colour, the principal topic of this entry, there is an even deeper puzzle. It is natural to think of the reddishness of a visual experience – its qualitative character – as an intrinsic and categorical property of the experience. Intrinsic properties are distinguished from relational properties in that an object’s possession of the former does not depend on its relation to, or even the existence of, other objects, whereas its possession of the latter does. Categorical properties are distinguished from dispositional ones. A dispositional property is one that an object has by virtue of its tendency to behave in certain ways, or cause certain effects, in particular circumstances. So being brittle is dispositional in that it involves being liable to break under slight pressure, whereas being six feet tall, say, is categorical. If subjective colour is intrinsic and categorical, then it would seem to be a neural property of a brain state. But what sort of neural property could explain the reddishness of an experience? Furthermore, reduction of subjective colour to a neural property would rule out even the possibility that forms of life with different physiological structures, or intelligent robots, could have experiences of the same qualitative type as our experiences of red. While some philosophers endorse this consequence, many find it quite implausible. Neural properties seem best suited to explain how certain functions are carried out, and therefore it might seem better to identify subjective colour with the property of playing a certain functional role within the entire cognitive system realized by the brain. This allows the possibility that structures physically different from human brains could support colour experiences of the same type as our own. However, various puzzles undermine the plausibility of this claim. For instance, it seems possible that two people could agree in all their judgements of relative similarity and yet one sees green where the other sees red. If this ‘inverted spectrum’ case is a genuine logical possibility, as many philosophers advocate, then it appears that subjective colour must not be a matter of functional role, but rather an intrinsic property of experience. Another possibility is that qualitative character is just a matter of features the visual system, in the case of colour, is representing objects in the visual field to have. Reddish experiences are just visual representations of red. But this view too has problems with spectrum-inversion scenarios, and also entails some counterintuitive consequences concerning our knowledge of our own qualitative states. Faced with the dilemmas posed by subjective colour for physicalist doctrine, some philosophers opt for eliminativism, the doctrine that subjective colour is not a genuine, or real, phenomenon after all. On this view the source of the puzzle is a conceptual confusion; a tendency to extend our judgements concerning objective colour, what appear to be intrinsic and categorical properties of the surfaces of physical objects, onto the properties of our mental states. Once we see that nothing qualitative is happening ‘inside’, we will understand why we cannot locate any state or property of the brain with which to identify subjective colour. The controversy over the nature of subjective colour is part of a wider debate about the subjective aspect of conscious experience more generally. How does the qualitative character of experience – what it is like to see, hear and smell – fit into a physicalist scientific framework? At present all of the options just presented have their adherents, and no general consensus exists.


Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 917 ◽  
Author(s):  
Soheil Keshmiri

Entropy is a powerful tool for quantification of the brain function and its information processing capacity. This is evident in its broad domain of applications that range from functional interactivity between the brain regions to quantification of the state of consciousness. A number of previous reviews summarized the use of entropic measures in neuroscience. However, these studies either focused on the overall use of nonlinear analytical methodologies for quantification of the brain activity or their contents pertained to a particular area of neuroscientific research. The present study aims at complementing these previous reviews in two ways. First, by covering the literature that specifically makes use of entropy for studying the brain function. Second, by highlighting the three fields of research in which the use of entropy has yielded highly promising results: the (altered) state of consciousness, the ageing brain, and the quantification of the brain networks’ information processing. In so doing, the present overview identifies that the use of entropic measures for the study of consciousness and its (altered) states led the field to substantially advance the previous findings. Moreover, it realizes that the use of these measures for the study of the ageing brain resulted in significant insights on various ways that the process of ageing may affect the dynamics and information processing capacity of the brain. It further reveals that their utilization for analysis of the brain regional interactivity formed a bridge between the previous two research areas, thereby providing further evidence in support of their results. It concludes by highlighting some potential considerations that may help future research to refine the use of entropic measures for the study of brain complexity and its function. The present study helps realize that (despite their seemingly differing lines of inquiry) the study of consciousness, the ageing brain, and the brain networks’ information processing are highly interrelated. Specifically, it identifies that the complexity, as quantified by entropy, is a fundamental property of conscious experience, which also plays a vital role in the brain’s capacity for adaptation and therefore whose loss by ageing constitutes a basis for diseases and disorders. Interestingly, these two perspectives neatly come together through the association of entropy and the brain capacity for information processing.


1995 ◽  
Vol 18 (4) ◽  
pp. 659-676 ◽  
Author(s):  
Jeffrey A. Gray

AbstractDrawing on previous models of anxiety, intermediate memory, the positive symptoms of schizophrenia, and goal-directed behaviour, a neuropsychological hypothesis is proposed for the generation of the contents of consciousness. It is suggested that these correspond to the outputs of a comparator that, on a moment-by-moment basis, compares the current state of the organism's perceptual world with a predicted state. An outline is given of the information-processing functions of the comparator system and of the neural systems which mediate them. The hypothesis appears to be able to account for a number of key features of the contents of consciousness. However, it is argued that neitherthis nor any existing comparable hypothesis is yet able to explain why the brain should generate conscious experience of any kind at all.


Sign in / Sign up

Export Citation Format

Share Document