Cognition, Emotion, Conscious Experience and the Brain

2005 ◽  
pp. 83-102 ◽  
Author(s):  
Jeffrey A. Gray
Author(s):  
Anil K. Seth

Consciousness is perhaps the most familiar aspect of our existence, yet we still do not know its biological basis. This chapter outlines a biomimetic approach to consciousness science, identifying three principles linking properties of conscious experience to potential biological mechanisms. First, conscious experiences generate large quantities of information in virtue of being simultaneously integrated and differentiated. Second, the brain continuously generates predictions about the world and self, which account for the specific content of conscious scenes. Third, the conscious self depends on active inference of self-related signals at multiple levels. Research following these principles helps move from establishing correlations between brain responses and consciousness towards explanations which account for phenomenological properties—addressing what can be called the “real problem” of consciousness. The picture that emerges is one in which consciousness, mind, and life, are tightly bound together—with implications for any possible future “conscious machines.”


Author(s):  
Joseph Levine

There are two basic philosophical problems about colour. The first concerns the nature of colour itself. That is, what sort of property is it? When I say of the shirt that I am wearing that it is red, what sort of fact about the shirt am I describing? The second problem concerns the nature of colour experience. When I look at the red shirt I have a visual experience with a certain qualitative character – a ‘reddish’ one. Thus colour seems in some sense to be a property of my sensory experience, as well as a property of my shirt. What sort of mental property is it? Obviously, the two problems are intimately related. In particular, there is a great deal of controversy over the following question: if we call the first sort of property ‘objective colour’ and the second ‘subjective colour’, which of the two, objective or subjective colour, is basic? Or do they both have an independent ontological status? Most philosophers adhere to the doctrine of physicalism, the view that all objects and events are ultimately constituted by the fundamental physical particles, properties and relations described in physical theory. The phenomena of both objective and subjective colour present problems for physicalism. With respect to objective colour, it is difficult to find any natural physical candidate with which to identify it. Our visual system responds in a similar manner to surfaces that vary along a wide range of physical parameters, even with respect to the reflection of light waves. Yet what could be more obvious than the fact that objects are coloured? In the case of subjective colour, the principal topic of this entry, there is an even deeper puzzle. It is natural to think of the reddishness of a visual experience – its qualitative character – as an intrinsic and categorical property of the experience. Intrinsic properties are distinguished from relational properties in that an object’s possession of the former does not depend on its relation to, or even the existence of, other objects, whereas its possession of the latter does. Categorical properties are distinguished from dispositional ones. A dispositional property is one that an object has by virtue of its tendency to behave in certain ways, or cause certain effects, in particular circumstances. So being brittle is dispositional in that it involves being liable to break under slight pressure, whereas being six feet tall, say, is categorical. If subjective colour is intrinsic and categorical, then it would seem to be a neural property of a brain state. But what sort of neural property could explain the reddishness of an experience? Furthermore, reduction of subjective colour to a neural property would rule out even the possibility that forms of life with different physiological structures, or intelligent robots, could have experiences of the same qualitative type as our experiences of red. While some philosophers endorse this consequence, many find it quite implausible. Neural properties seem best suited to explain how certain functions are carried out, and therefore it might seem better to identify subjective colour with the property of playing a certain functional role within the entire cognitive system realized by the brain. This allows the possibility that structures physically different from human brains could support colour experiences of the same type as our own. However, various puzzles undermine the plausibility of this claim. For instance, it seems possible that two people could agree in all their judgements of relative similarity and yet one sees green where the other sees red. If this ‘inverted spectrum’ case is a genuine logical possibility, as many philosophers advocate, then it appears that subjective colour must not be a matter of functional role, but rather an intrinsic property of experience. Another possibility is that qualitative character is just a matter of features the visual system, in the case of colour, is representing objects in the visual field to have. Reddish experiences are just visual representations of red. But this view too has problems with spectrum-inversion scenarios, and also entails some counterintuitive consequences concerning our knowledge of our own qualitative states. Faced with the dilemmas posed by subjective colour for physicalist doctrine, some philosophers opt for eliminativism, the doctrine that subjective colour is not a genuine, or real, phenomenon after all. On this view the source of the puzzle is a conceptual confusion; a tendency to extend our judgements concerning objective colour, what appear to be intrinsic and categorical properties of the surfaces of physical objects, onto the properties of our mental states. Once we see that nothing qualitative is happening ‘inside’, we will understand why we cannot locate any state or property of the brain with which to identify subjective colour. The controversy over the nature of subjective colour is part of a wider debate about the subjective aspect of conscious experience more generally. How does the qualitative character of experience – what it is like to see, hear and smell – fit into a physicalist scientific framework? At present all of the options just presented have their adherents, and no general consensus exists.


Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 917 ◽  
Author(s):  
Soheil Keshmiri

Entropy is a powerful tool for quantification of the brain function and its information processing capacity. This is evident in its broad domain of applications that range from functional interactivity between the brain regions to quantification of the state of consciousness. A number of previous reviews summarized the use of entropic measures in neuroscience. However, these studies either focused on the overall use of nonlinear analytical methodologies for quantification of the brain activity or their contents pertained to a particular area of neuroscientific research. The present study aims at complementing these previous reviews in two ways. First, by covering the literature that specifically makes use of entropy for studying the brain function. Second, by highlighting the three fields of research in which the use of entropy has yielded highly promising results: the (altered) state of consciousness, the ageing brain, and the quantification of the brain networks’ information processing. In so doing, the present overview identifies that the use of entropic measures for the study of consciousness and its (altered) states led the field to substantially advance the previous findings. Moreover, it realizes that the use of these measures for the study of the ageing brain resulted in significant insights on various ways that the process of ageing may affect the dynamics and information processing capacity of the brain. It further reveals that their utilization for analysis of the brain regional interactivity formed a bridge between the previous two research areas, thereby providing further evidence in support of their results. It concludes by highlighting some potential considerations that may help future research to refine the use of entropic measures for the study of brain complexity and its function. The present study helps realize that (despite their seemingly differing lines of inquiry) the study of consciousness, the ageing brain, and the brain networks’ information processing are highly interrelated. Specifically, it identifies that the complexity, as quantified by entropy, is a fundamental property of conscious experience, which also plays a vital role in the brain’s capacity for adaptation and therefore whose loss by ageing constitutes a basis for diseases and disorders. Interestingly, these two perspectives neatly come together through the association of entropy and the brain capacity for information processing.


1995 ◽  
Vol 18 (4) ◽  
pp. 659-676 ◽  
Author(s):  
Jeffrey A. Gray

AbstractDrawing on previous models of anxiety, intermediate memory, the positive symptoms of schizophrenia, and goal-directed behaviour, a neuropsychological hypothesis is proposed for the generation of the contents of consciousness. It is suggested that these correspond to the outputs of a comparator that, on a moment-by-moment basis, compares the current state of the organism's perceptual world with a predicted state. An outline is given of the information-processing functions of the comparator system and of the neural systems which mediate them. The hypothesis appears to be able to account for a number of key features of the contents of consciousness. However, it is argued that neitherthis nor any existing comparable hypothesis is yet able to explain why the brain should generate conscious experience of any kind at all.


2015 ◽  
Vol 26 (3) ◽  
Author(s):  
Tereza Touskova ◽  
Petr Bob

AbstractAccording to recent research, disturbances of self-awareness and conscious experience have a critical role in the pathophysiology of schizophrenia, and in this context, schizophrenia is currently understood as a disorder characterized by distortions of acts of awareness, self-consciousness, and self-monitoring. Together, these studies suggest that the processes of disrupted awareness and conscious disintegration in schizophrenia might be related and represented by similar disruptions on the brain level, which, in principle, could be explained by various levels of disturbed connectivity and information disintegration that may negatively affect usual patterns of synchronous activity constituting adaptive integrative functions of consciousness. On the other hand, mental integration based on self-awareness and insight may significantly increase information integration and directly influence neural mechanisms underlying basic pathophysiological processes in schizophrenia.


2013 ◽  
Vol 30 (1) ◽  
pp. 113-128
Author(s):  
Charles Kedric Fink

Buddhism teaches that ‘self’ as a substantial, enduring entity is an illusion. But for self to be an illusion there must be something in our experience that is misinterpreted as self. What is this? The notion of an experiential self plays an important role in phenomenological investigations of conscious experience. Does the illusion of self consist in mistaking a purely experiential self for a substantial self? I argue against this and locate the source of the illusion in time-consciousness. It is the essence of consciousness to flow, but the flow of consciousness presupposes an experiential present. The experiential present — an abiding sense of ‘now’ — is the dimension through which experiences are experienced as streaming. It is this, I argue, that is misinterpreted as an enduring self. I support my account by arguing that the synchronic and diachronic unity of consciousness can be accounted for in terms of impersonal, temporal experience, and that conceiving of consciousness as the presence-dimension rather than as the I-dimension affords a solution to the brain-bisection puzzle.


F1000Research ◽  
2018 ◽  
Vol 3 ◽  
pp. 316
Author(s):  
Sheila Bouten ◽  
Hugo Pantecouteau ◽  
J. Bruno Debruille

Qualia, the individual instances of subjective conscious experience, are private events. However, in everyday life, we assume qualia of others and their perceptual worlds, to be similar to ours. One way this similarity is possible is if qualia of others somehow contribute to the production of qualia by our own brain and vice versa. To test this hypothesis, we focused on the mean voltages of event-related potentials (ERPs) in the time-window of the P600 component, whose amplitude correlates positively with conscious awareness. These ERPs were elicited by images of the international affective picture system in 16 pairs of friends, siblings or couples going side by side through hyperscanning without having to interact. Each of the 32 members of these 16 pairs faced one half of the screen and could not see what the other member was presented with on the other half. One stimulus occurred on each half simultaneously. The sameness of these stimulus pairs was manipulated as well as the participants’ belief in that sameness by telling subjects’ pairs that they were going to be presented with the same stimuli in two blocks and with different ones in the two others. ERPs were more positive at all electrode subsets for stimulus pairs that were inconsistent with the belief than for those that were consistent. In the N400 time window, at frontal electrode sites, ERPs were again more positive for inconsistent than for consistent stimuli. As participants had no way to see the stimulus their partner was presented with and thus no way to detect inconsistence, these data might reveal an impact of the qualia of a person on the brain activity of another. Such impact could provide a research avenue when trying to explain the similarity of qualia across individuals.


2020 ◽  
Author(s):  
Andrea I. Luppi ◽  
Pedro A.M. Mediano ◽  
Fernando E. Rosas ◽  
Judith Allanson ◽  
John D. Pickard ◽  
...  

AbstractA central goal of neuroscience is to understand how the brain synthesises information from multiple inputs to give rise to a unified conscious experience. This process is widely believed to require integration of information. Here, we combine information theory and network science to address two fundamental questions: how is the human information-processing architecture functionally organised? And how does this organisation support human consciousness? To address these questions, we leverage the mathematical framework of Integrated Information Decomposition to delineate a cognitive architecture wherein specialised modules interact with a “synergistic global workspace,” comprising functionally distinct gateways and broadcasters. Gateway regions gather information from the specialised modules for processing in the synergistic workspace, whose contents are then further integrated to later be made widely available by broadcasters. Through data-driven analysis of resting-state functional MRI, we reveal that gateway regions correspond to the brain’s well-known default mode network, whereas broadcasters of information coincide with the executive control network. Demonstrating that this synergistic workspace supports human consciousness, we further apply Integrated Information Decomposition to BOLD signals to compute integrated information across the brain. By comparing changes due to propofol anaesthesia and severe brain injury, we demonstrate that most changes in integrated information happen within the synergistic workspace. Furthermore, it was found that loss of consciousness corresponds to reduced integrated information between gateway, but not broadcaster, regions of the synergistic workspace. Thus, loss of consciousness may coincide with breakdown of information integration by this synergistic workspace of the human brain. Together, these findings demonstrate that refining our understanding of information-processing in the human brain through Integrated Information Decomposition can provide powerful insights into the human neurocognitive architecture, and its role in supporting consciousness.


Sign in / Sign up

Export Citation Format

Share Document