scholarly journals Involving patients, families and medical staff in the evaluation of 3D printing models of congenital heart disease

2016 ◽  
Vol 12 (2-3) ◽  
Author(s):  
Giovanni Biglino ◽  
Claudio Capelli ◽  
Lindsay-Kay Leaver ◽  
Silvia Schievano ◽  
Andrew M. Taylor ◽  
...  

Objective: To evaluate the usefulness of 3D printing patient-specific models of congenital heart disease (CHD) from the perspective of different stakeholders potentially benefiting from the technology (patients, parents, clinicians and nurses). Methods: Workshops, focus groups and teaching sessions were organized, each targeting a different group of stakeholders. Sessions involved displaying and discussing different 3D models of CHD. Model evaluation involved questionnaires, audio-recorded discussions and written feedback. Results: All stakeholders expressed a liking for the 3D models and for the patient-specific quality of such models. Patients indicated that 3D models can help them imagine “what’s going on inside” and parents agreed that these tools can spark curiosity in the young people. Clinicians indicated that teaching might be the most relevant application of such novel technology and nurses agreed that 3D models improved their learning experience during a course focused on CHD. Conclusion: The successful engagement of different stakeholders to evaluate 3D printing technology for CHD identified different priorities, highlighting the importance of eliciting the views of different groups. Practice Implications: A PPI-based approach in the evaluation and translation of 3D printing technology may increase patient empowerment, improve patient-doctor communication and provide better access to a new teaching and training tool.

Author(s):  
Hui Lin ◽  
Kim L. McBride ◽  
Vidu Garg ◽  
Ming-Tao Zhao

Congenital heart disease (CHD) is the most common cause of infant death associated with birth defects. Recent next-generation genome sequencing has uncovered novel genetic etiologies of CHD, from inherited and de novo variants to non-coding genetic variants. The next phase of understanding the genetic contributors of CHD will be the functional illustration and validation of this genome sequencing data in cellular and animal model systems. Human induced pluripotent stem cells (iPSCs) have opened up new horizons to investigate genetic mechanisms of CHD using clinically relevant and patient-specific cardiac cells such as cardiomyocytes, endothelial/endocardial cells, cardiac fibroblasts and vascular smooth muscle cells. Using cutting-edge CRISPR/Cas9 genome editing tools, a given genetic variant can be corrected in diseased iPSCs and introduced to healthy iPSCs to define the pathogenicity of the variant and molecular basis of CHD. In this review, we discuss the recent progress in genetics of CHD deciphered by large-scale genome sequencing and explore how genome-edited patient iPSCs are poised to decode the genetic etiologies of CHD by coupling with single-cell genomics and organoid technologies.


2019 ◽  
Vol 10 (5) ◽  
pp. 533-538 ◽  
Author(s):  
Frank Han ◽  
Jennifer Co-Vu ◽  
Dalia Lopez-Colon ◽  
John Forder ◽  
Mark Bleiweis ◽  
...  

Planning corrective and palliative surgery for patients who have complex congenital heart disease often relies on the assessment of cardiac anatomy using two-dimensional noninvasive cardiac imaging modalities (echocardiography, cardiac magnetic resonance imaging, and computed tomography scan). Advances in cardiac noninvasive imaging now include the use of three-dimensional (3D) reconstruction tools that produce 3D images and 3D printouts. There is scant evidence available in the literature as to what effect the availability of 3D printouts of complex congenital heart defects has on surgical outcomes. Surgical outcomes of study subjects with a 3D cardiac printout available and their paired control subject without a 3D cardiac printout available were compared. We found a trend toward shorter surgical times in the study group who had the benefit of 3D models, but no statistical significance was found for bypass time, cross-clamp time, total time, length of stay, or respiratory support. These preliminary results support the proposal that 3D modeling be made readily available to congenital cardiac surgery teams, for use in patients with the most complex congenital heart disease.


Author(s):  
Ramsey F. Hamade ◽  
Mohammad Karim Elham ◽  
Issam El Rassi ◽  
Lamya Atweh ◽  
Ziad Bulbul ◽  
...  

Presented in this work is a detailed methodology of how to properly print 3-dimensional (3D) heart models starting from computed tomography (CT) scan and using the Mimics Innovation Suite (Mimics and 3-matic) software package (from Materialize, Leuven, Belgium). The methodology starts by segmenting the clinical DICOM files to retain masks of gray value range of interest. Specifically, retained is the blood volume contained in the heart. Using Mimics, this is accomplished by creating mask and then editing and refining the relevant mask in order to isolate the blood within a certain range of Hounsfield Units (HU). A second mask is created using different gray value ranges to isolate the tissues of the heart. Both 3D models are transferred to 3-matic where integrated Boolean operations are executed to subtract the geometric entities thus retaining the 3D geometry of the heart (including myocardium, cavities, and arteries) of interest. The retained model geometry consists of the muscle surface of the heart and enclosing the hollowed cavities inside that represent the blood volume. Following further processing in 3-matic, the 3D model is now ready for 3D printing. At the American University of Beirut (AUB), a ProJet 3510 SD (3D Systems) is employed to print the heart models (both sectioned and whole). Printed 3D models are employed within the Program for Congenital Heart Disease at AUB that represents a model for clinical applications, education, and research as the first such initiative in Lebanon and the Middle East region.


2019 ◽  
Vol 8 (4) ◽  
pp. 522 ◽  
Author(s):  
Sun ◽  
Lau ◽  
Wong ◽  
Yeong

Patient-specific three-dimensional (3D) printed models have been increasingly used in cardiology and cardiac surgery, in particular, showing great value in the domain of congenital heart disease (CHD). CHD is characterized by complex cardiac anomalies with disease variations between individuals; thus, it is difficult to obtain comprehensive spatial conceptualization of the cardiac structures based on the current imaging visualizations. 3D printed models derived from patient’s cardiac imaging data overcome this limitation by creating personalized 3D heart models, which not only improve spatial visualization, but also assist preoperative planning and simulation of cardiac procedures, serve as a useful tool in medical education and training, and improve doctor–patient communication. This review article provides an overall view of the clinical applications and usefulness of 3D printed models in CHD. Current limitations and future research directions of 3D printed heart models are highlighted.


2016 ◽  
Vol 18 (S1) ◽  
Author(s):  
Nicholas Byrne ◽  
Mari-Nieves Velasco Forte ◽  
Srinivas Narayan ◽  
Gerald F Greil ◽  
Israel Valverde ◽  
...  

2017 ◽  
Vol 54 ◽  
pp. 111-116 ◽  
Author(s):  
Rafael Medero ◽  
Sylvana García-Rodríguez ◽  
Christopher J. François ◽  
Alejandro Roldán-Alzate

Sign in / Sign up

Export Citation Format

Share Document