scholarly journals Analysis of the photocatalytic activity of TiO2 coating on a glass as a criterion of its ability to self-cleaning

2019 ◽  
Vol 6 (1(50)) ◽  
pp. 14-17
Author(s):  
Mykola Plemyannikov
2021 ◽  
Vol 73 ◽  
pp. 105483
Author(s):  
A. Rosales ◽  
L. Ortiz-Frade ◽  
Iliana E. Medina-Ramirez ◽  
Luis A. Godínez ◽  
K. Esquivel

2009 ◽  
Vol 11 (37) ◽  
pp. 8367 ◽  
Author(s):  
Andreas Kafizas ◽  
Davy Adriaens ◽  
Andrew Mills ◽  
Ivan P. Parkin

Cerâmica ◽  
2019 ◽  
Vol 65 (375) ◽  
pp. 477-484 ◽  
Author(s):  
M. P. Madeira ◽  
A. O. Lobo ◽  
B. C. Viana ◽  
E. C. Silva Filho ◽  
J. A. Osajima

Abstract Herein we present a short review of different materials and techniques that have been used for the production of surfaces with self-cleaning and/or antimicrobial properties. From this, it was verified that titanium dioxide was the most frequently used compound to obtain surfaces with these properties; however, other materials such as silica, zinc and silver have also been used for this purpose. The spin-coating and dip-coating techniques were the most used techniques, and the bacteria Staphylococcus aureus and Escherichia coli were the most used in the antimicrobial assays. The analyzed studies showed that it is possible to obtain surfaces with both self-cleaning and/or antimicrobial properties, as well as with photocatalytic activity. Regarding possible applications, it is possible to highlight the interest in the production of glass and medical devices with self-cleaning and/or antimicrobial action.


2014 ◽  
Vol 319 ◽  
pp. 367-371 ◽  
Author(s):  
Eun Ji Park ◽  
Hye Soo Yoon ◽  
Dae Han Kim ◽  
Yong Ho Kim ◽  
Young Dok Kim

2021 ◽  
Author(s):  
Esfandiar Pakdel ◽  
Hai Zhao ◽  
Jinfeng Wang ◽  
Bin Tang ◽  
Russell Varley ◽  
...  

Abstract This research presents the development of novel self-cleaning cotton fabric with dual functionalities of superhydrophobicity and photocatalytic activity. Fluorine-free coating formulations composed of either flower-like TiO2 or nitrogen-doped TiO2 particles, with a hierarchical surface morphology, and polydimethyl siloxane (PDMS) polymer were applied to cotton fabrics using a facile dip-coating method. The self-cleaning performance of fabrics was assessed based on their superhydrophobicity and effective removal of oil-based food stains. Additionally, the impact of nitrogen doping on photocatalytic activity of flower-like TiO2 particles was investigated. The obtained results demonstrated that the presence of both PDMS and hierarchical particles generated excellent superhydrophobicity on the cotton fabric with a water contact angle of 156.7 ± 1.9⁰. In addition, the coated fabric exhibited highly efficient photocatalytic activity, decomposing stains under simulated sunlight. Nitrogen doping process significantly boosted the photocatalytic activity of TiO2 particles in degrading stains and dye solution. The developed superhydrophobic fabric showed high robustness against both chemical and physical durability tests. This research contributes significantly to the continued advancement of highly efficient self-cleaning textiles via the development of dual functions of superhydrophobicity and photocatalytic activity.


Author(s):  
M. Antonenko ◽  
Yu. Ogurtsova ◽  
V. Strokova ◽  
E. Gubareva

The paper reviews the available technologies for producing photocatalytic active self-cleaning materials based on cement, including concretes and dry building mixtures. Used photocatalytic additives and their influence on the cement system are considered. The applied methods for assessing the photocatalytic activity of self-cleaning cement materials are presented. The compositions of concrete mixtures, their properties, areas and prospects of application are analyzed. The main problems of development, production and application of photocatalytic active self-cleaning materials based on cement are presented. The main directions to increase the self-cleaning ability of photocatalytic active materials based on cement are: optimization of the microstructure of the photocatalyst and the composite with its use in the direction of creating a developed surface of the photocatalyst - hierarchical microstructure; it intensifies the diffusion processes of photocatalytic reaction reagents and increases the contact area photocatalyst with a pollutant; it absorbs and accumulates ultraviolet radiation waves; optimization of the phase composition of titanium dioxide - search for the ratio of the anatase and rutile phases, at which the maximum photocatalytic activity is achieved; choosing of economically feasible method for periodical updating of the surface of concrete products carbonized during operation in order to restore self-cleaning ability.


Sign in / Sign up

Export Citation Format

Share Document