scholarly journals Finite element method with account of singularity for mixed mode cracks

2020 ◽  
pp. 220-236
Author(s):  
A. M Tartygasheva ◽  
V. N Shlyannikov ◽  
A. V Tumanov

The paper deals with obtaining an analytical solution for stiffness matrix coefficients at a crack tip area for mixed mode cracks in plane strain conditions. The numerical study is focused on an infinite plate with a straight-through central crack under mixed loading. Analytical solutions are obtained as kinematic boundary conditions for plane strain. We analyzed distribution features of the stress-strain state fields and stress intensity coefficients at the top of the crack area, determined using the finite element method taking into account the singularity. The analytical formulas are obtained which set the kinematic conditions for a general and special case of loading a plate with a defect in the elastic setting for the case of plane deformation. The comparative analysis of the numerical results is presented for two cases of forming the design diagram of the top of the crack: the traditional method of creating a mathematical cut and the finite element method taking into account the singularity. The advantage of using the finite element method considering the singularity is found. We used an example of a plate with a through straight rectilinear central crack with the equal biaxial tension to show that setting the boundary conditions at the top of the crack taking into account the singularity allows one to significantly reduce dimensions of a calculation scheme of the finite element method and keep the calculation accuracy. It is concluded that such a formulation can be applied in an elastic-plastic formulation. The comparison between the classical finite element solution and finite element with singularity is presented. The convenience of the finite element method with singular boundary conditions is demonstrated.

Author(s):  
Виктор Григорьевич Чеверев ◽  
Евгений Викторович Сафронов ◽  
Алексей Александрович Коротков ◽  
Александр Сергеевич Чернятин

Существуют два основных подхода решения задачи тепломассопереноса при численном моделировании промерзания грунтов: 1) решение методом конечных разностей с учетом граничных условий (границей, например, является фронт промерзания); 2) решение методом конечных элементов без учета границ модели. Оба подхода имеют существенные недостатки, что оставляет проблему решения задачи для численной модели промерзания грунтов острой и актуальной. В данной работе представлена физическая постановка промерзания, которая позволяет создать численную модель, базирующуюся на решении методом конечных элементов, но при этом отражающую ход фронта промерзания - то есть модель, в которой объединены оба подхода к решению задачи промерзания грунтов. Для подтверждения корректности модели был проделан ряд экспериментов по физическому моделированию промерзания модельного грунта и выполнен сравнительный анализ полученных экспериментальных данных и результатов расчетов на базе представленной численной модели с такими же граничными условиями, как в экспериментах. There are two basic approaches to solving the problem of heat and mass transfer in the numerical modeling of soil freezing: 1) using the finite difference method taking into account boundary conditions (the boundary, for example, is the freezing front); 2) using the finite element method without consideration of model boundaries. Both approaches have significant drawbacks, which leaves the issue of solving the problem for the numerical model of soil freezing acute and up-to-date. This article provides the physical setting of freezing that allows us to create a numerical model based on the solution by the finite element method, but at the same time reflecting the route of the freezing front, i.e. the model that combines both approaches to solving the problem of soil freezing. In order to confirm the correctness of the model, a number of experiments on physical modeling of model soil freezing have been performed, and a comparative analysis of the experimental data obtained and the calculation results based on the provided numerical model with the same boundary conditions as in the experiments was performed.


1999 ◽  
Vol 21 (2) ◽  
pp. 116-128
Author(s):  
Pham Thi Toan

In the present paper, the goffered multilayered composite cylindrical shells is directly calculated by finite element method. Numerical results on displacements, internal forces and moments are obtained for various kinds of external loads and different boundary conditions.


1971 ◽  
Vol 93 (2) ◽  
pp. 445-454 ◽  
Author(s):  
C. H. Lee ◽  
Shiro Kobayashi

Detailed studies of the deformation characteristics in axisymmetric upsetting and plane-strain side-pressing were attempted by the finite element method. Solutions were obtained up to a 33 percent reduction in height in axisymmetric upsetting and up to a 19 percent reduction in height in side-pressing, under conditions of complete sticking at the tool-workpiece interface. Load-displacement curves, plastic zone development, and strain and stress distributions were presented, and some of the computed solutions were compared with those found experimentally.


2013 ◽  
Vol 26 ◽  
pp. 143-151 ◽  
Author(s):  
Sadegh Imani Yengejeh ◽  
Mojtaba Akbarzade ◽  
Andreas Öchsner

In this study, numerous types of straight hetero-junction carbon nanotubes (CNTs) and their fundamental CNTs were investigated by the finite element method (FEM). By applying the FEM, the shear behavior of these hetero-junctions was obtained thorough numerical simulation. The behavior of hetero-junctions and their constituent CNTs were investigated. The investigations revealed that the twisting angle of straight hetero-junction CNTs lies within the range of twisting angle of their fundamental CNTs. In addition, change of boundary conditions did not significantly change the value of obtained twisting angle of hetero-junctions. It was also concluded that the shear behavior of straight hetero-junctions and their constituent CNTs increases by increasing the chiral number of both armchair and zigzag CNTs. The current study provides a better insight towards the prediction of straight hetero-junction CNTs behavior.


2018 ◽  
Vol 9 (1) ◽  
pp. 171-174
Author(s):  
Richárd Molnár ◽  
Gergely Dezső

Abstract Nowadays more and more ultralight aircraft are being built because the building process itself and the acquisition of the necessary documentation is relatively easy. Furthermore, these planes are easier to fly than larger types of aircraft. This article presents the engineering work and documentation that is necessary for the building process. The calculations can be done traditionally on paper which is an extremely complex task. With the innovations and developments in the technical field though, it is possible now to simplify these calculations, the basis of which is the finite element method and aerodynamics simulations. If the finite element method is adequate, the boundary conditions are ideal and input-output settings for the simulations are correct, it is possible to compare the traditional calculations to the modern simulated engineering work, thus the time necessary for achieving precise results becomes significantly shorter.


Author(s):  
К. П. Барахов

Thin-walled structures may contain defects as cracks and holes that are leftovers of the material the construction, is made of or they occur during the operation as a result of, for example, mechanical damage. The presence of holes in the plate causes a concentration of stresses at the boundary of the holes and ultimately leads to premature failure of the structural element. Repair of local damage of modern aircraft structures can be made by creating overlays that are glued to the main structure. The overlay takes on part of the load, unloading the damaged area. This method of repair provides tightness and aerodynamic efficiency to the structure. The calculation of the stress state of such glued structures is usually performed by using the finite element method. The classic models of the stress state of overlapped joints are one-dimensional. That is, the change of the stress state along only one coordinate is considered. At the same time, the connections of a rectangular form are also considered. The purpose of this work is to create a mathematical model of the stress state of circular axisymmetric adhesive joints and to build an appropriate analytical solution to the problem. It is assumed that the bending of the plates is absent; the deformation of the plates is even by thickness. The adhesive layer works only on the shift. The main plate and the overlay are considered isotropic. The solution is built on polar coordinates. The stress state of the connection depends only on the radial coordinate, i.e. one-dimensional. The solution is obtained in analytical form. This mathematical model is a generalization of the classical model of the adhesive connection of Volkersen to a circular or annular region and is considered for the first time. Boundary conditions are met exactly. The satisfaction of marginal conditions, as well as boundary conditions, leads to a system of linear equations with respect to the unknown coefficients of the obtained solutions. The model problem is solved and the numerical results are compared with the results of calculations performed by using the finite element method. It is shown that the proposed model has sufficient accuracy for engineering problems and can be used to solve problems of the design of aerospace structures.


Sign in / Sign up

Export Citation Format

Share Document