scholarly journals Intelligent Bearing Fault Diagnosis Method Based on HNR Envelope and Classification Using Supervised Machine Learning Algorithms

Author(s):  
Ilias Ouachtouk ◽  
Soumia El Hani ◽  
Khalid Dahi
2012 ◽  
Vol 152-154 ◽  
pp. 1628-1633 ◽  
Author(s):  
Su Qun Cao ◽  
Xiao Ming Zuo ◽  
Ai Xiang Tao ◽  
Jun Min Wang ◽  
Xiang Zhi Chen

In recent years, machine learning techniques have been widely used in intelligent fault diagnosis field. As a major unsupervised learning technology, cluster analysis plays an important role in fault intelligent diagnosis based on machine learning. In rolling bearing fault diagnosis, the traditional spectrum analysis method usually adopts the resonant demodulation technology, but when the inner circle, rolling body or multi-point faults produce composite modulation, it is difficulty to identify the fault type from demodulation spectral lines. According to this, a novel rolling bearing fault diagnosis method based on KFCM (Kernel-based Fuzzy C-Means) cluster analysis is proposed. Through clustering on test data and the known samples, the memberships of test data are obtained. From these, the rolling bearing fault type can be determined. Experimental results show that this method is effective.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5150
Author(s):  
Shiza Mushtaq ◽  
M. M. Manjurul Islam ◽  
Muhammad Sohaib

This paper presents a comprehensive review of the developments made in rotating bearing fault diagnosis, a crucial component of a rotatory machine, during the past decade. A data-driven fault diagnosis framework consists of data acquisition, feature extraction/feature learning, and decision making based on shallow/deep learning algorithms. In this review paper, various signal processing techniques, classical machine learning approaches, and deep learning algorithms used for bearing fault diagnosis have been discussed. Moreover, highlights of the available public datasets that have been widely used in bearing fault diagnosis experiments, such as Case Western Reserve University (CWRU), Paderborn University Bearing, PRONOSTIA, and Intelligent Maintenance Systems (IMS), are discussed in this paper. A comparison of machine learning techniques, such as support vector machines, k-nearest neighbors, artificial neural networks, etc., deep learning algorithms such as a deep convolutional network (CNN), auto-encoder-based deep neural network (AE-DNN), deep belief network (DBN), deep recurrent neural network (RNN), and other deep learning methods that have been utilized for the diagnosis of rotary machines bearing fault, is presented.


2021 ◽  
Vol 1916 (1) ◽  
pp. 012042
Author(s):  
Ranjani Dhanapal ◽  
A AjanRaj ◽  
S Balavinayagapragathish ◽  
J Balaji

2021 ◽  
Vol 1792 (1) ◽  
pp. 012035
Author(s):  
Xingtong Zhu ◽  
Zhiling Huang ◽  
Jinfeng Chen ◽  
Junhao Lu

Sign in / Sign up

Export Citation Format

Share Document