Invited Minireview: Restoring Demographic Processes in Translocated Populations: The Case of Collared Lizards in the Missouri Ozarks Using Prescribed Forest Fires

2007 ◽  
Vol 53 (2) ◽  
pp. 179-196 ◽  
Author(s):  
Alan R. Templeton ◽  
Jennifer L. Neuwald ◽  
Hilary Brazeal ◽  
R. James Robertson

Habitat fragmentation is one of the more important contributors to species endangerment, but one form of fragmentation, here called dispersal fragmentation, can often go unobserved for many years after it has occurred. Many species live in naturally fragmented habitats, but the local populations are interconnected genetically and demographically by dispersal through the environmental matrix in which the habitats are embedded. Because of dispersal, the local populations are not truly fragmented evolutionarily or ecologically. However, when human activities alter the environmental matrix such that dispersal is no longer possible, the population does indeed become fragmented even though they initially are present in the same habitats. An example of dispersal fragmentation via an altered environmental matrix is provided by the eastern collared lizard (Crotaphytus collaris collaris). This lizard lives on open, rocky habitats, called glades, that are embedded in the forests of the Ozarks, a highland region located primarily in Missouri and Arkansas in the USA. Forest fire suppression has reduced this habitat, resulting in severe habitat fragmentation, disruption of gene flow, loss of genetic variation within glade populations, and local extinction without recolonization. Beginning in 1982, glade habitats were restored by clearing and burning in the Peck Ranch area of the Missouri Ozarks, a region where the lizards had gone extinct. Starting in 1984, lizard populations were translocated from other Missouri glades onto restored glades at the Peck Ranch. Although these translocated populations survived well on the restored glades, no movement was detected between glades, some just 50 m apart, and no colonization of nearby restored glades, some just 60 m away, occurred between 1984 and 1993. Fragmentation, lack of colonization, no gene flow, and loss of genetic variation still persisted despite translocation reversing some of the local extinction. Fire scar data from trees and tree stumps indicated that forest fires were common in this area prior to European settlement, so in 1994 a new management policy of prescribed burning of both the glades and their forest matrix was initiated. Once the forest had been burned, the lizards could disperse kilometers through the forest, thereby reestablishing the processes of dispersal, gene flow, colonization, and local extinction followed by recolonization. This resulted in a dramatic increase in population size and inhabited area. By incorporating a landscape perspective into the management strategy, the eastern collared lizard has been successfully reestablished in a region of historic extirpation.

2018 ◽  
Author(s):  
Leonardo P. Niero ◽  
Mercival R. Francisco ◽  
Bruno H. Saranholi ◽  
Luis F. Silveira ◽  
Pedro M. Galetti Jr

Habitat fragmentation is one of the main threats to the biodiversity and one of the main challenges faced by conservation biology. This study assessed the effects of habitat fragmentation on the genetic variability of the blue manakin Chiroxiphia caudata, an endemic bird of Atlantic Forest biome. Nine microsatellite loci were used to analyze individuals from five Atlantic Forest areas. Private alleles were found in all areas. Fst, Dest, Bayesian and Discriminant analysis of principal components (DAPC) indicated that populations are genetically structured, but the distance could not explain the differentiation between areas. The fragmentation and the reduction of gene flow may be acting in order to increase the differentiation between areas. Thus, even a generalist species may be affected by habitat fragmentation. Despite this, the whole complex of fragmented areas in Atlantic Forest appears to play an important role for the blue manakin by sheltering its genetic diversity as a whole.


2018 ◽  
Author(s):  
Leonardo P. Niero ◽  
Mercival R. Francisco ◽  
Bruno H. Saranholi ◽  
Luis F. Silveira ◽  
Pedro M. Galetti Jr

Habitat fragmentation is one of the main threats to the biodiversity and one of the main challenges faced by conservation biology. This study assessed the effects of habitat fragmentation on the genetic variability of the blue manakin Chiroxiphia caudata, an endemic bird of Atlantic Forest biome. Nine microsatellite loci were used to analyze individuals from five Atlantic Forest areas. Private alleles were found in all areas. Fst, Dest, Bayesian and Discriminant analysis of principal components (DAPC) indicated that populations are genetically structured, but the distance could not explain the differentiation between areas. The fragmentation and the reduction of gene flow may be acting in order to increase the differentiation between areas. Thus, even a generalist species may be affected by habitat fragmentation. Despite this, the whole complex of fragmented areas in Atlantic Forest appears to play an important role for the blue manakin by sheltering its genetic diversity as a whole.


Copeia ◽  
1998 ◽  
Vol 1998 (2) ◽  
pp. 411 ◽  
Author(s):  
Lauretta M. Bushar ◽  
Howard K. Reinert ◽  
Larry Gelbert

Genetics ◽  
1975 ◽  
Vol 80 (4) ◽  
pp. 785-805
Author(s):  
P T Spieth

ABSTRACT Electrophoretically detectable variation in the fungus Neurospora intermedia has been surveyed among isolates from natural populations in Malaya, Papua, Australia and Florida. The principal result is a pattern of genetic variation within and between populations that is qualitatively no different than the well documented patterns for Drosophila and humans. In particular, there is a high level of genetic variation, the majority of which occurs at the level of local populations. Evidence is presented which argues that N. intermedia has a population structure analogous to that of an annual vascular plant with a high level of vegetative reproduction. Sexual reproduction appears to be a regular feature in the biology of the species. Substantial heterokaryon function seems unlikely in natural populations of N. intermedia. Theoretical considerations concerning the mechanisms underlying the observed pattern of variation most likely should be consistent with haploid selection theory. The implications of this constraint upon the theory are discussed in detail, leading to the presentation of a model based upon the concept of environmental heterogeneity. The essence of the model, which is equally applicable to haploid and diploid situations, is a shifting distribution of multiple adaptive niches among local populations such that a given population has a small net selective pressure in favor of one allele or another, depending upon its particular distribution of niches. Gene flow among neighboring populations with differing net selective pressures is postulated as the principal factor underlying intrapopulational allozyme variation.


2011 ◽  
Vol 59 (6) ◽  
pp. 515 ◽  
Author(s):  
Tian Tang ◽  
Lian He ◽  
Feng Peng ◽  
Suhua Shi

Hibiscus tiliaceus L. (Malvaceae) is a pantropical coastal tree that extends to the tidal zone. In this study, the retrotransposon sequence-specific amplified polymorphism (SSAP) technique was used in order to understand the genetic variation between four population pairs of H. tiliaceus from repeated estuarine and inland habitat contrasts in China. The estuarine populations were consistently more genetic variable compared with the inland ones, which may be attributed to extensive gene flow via water-drifted seeds and/or retrotransposon activation in stressful estuarine environments. An AMOVA revealed that 8.9% of the genetic variance could be explained by the habitat divergence within site, as compared with only 4.9% to geographical isolation between sites, which indicates significant habitat differentiation between the estuarine and inland populations. The estuarine populations were less differentiated (ΦST = 0.115) than the inland (ΦST = 0.152) implying frequent gene interchange in the former. Accordingly, the principal coordinate analysis of genetic distance between individuals revealed that genetic relationships are not fully consistent with the geographic association. These results suggest that despite substantial gene flow via sea-drifted seeds, habitat-related divergent selection could be one of the primary mechanisms that drive habitat differentiation in H. tiliaceus at a local ecological scale.


1998 ◽  
Vol 46 (6) ◽  
pp. 671 ◽  
Author(s):  
G. J. Starr ◽  
S. M. Carthew

Fragmentation of the landscape by human activity has created small, isolated plant populations. Hakea carinata F. Muell. ex Meissner, a sclerophyllous shrub, is common in isolated fragments of vegetation in South Australia. This study investigated whether habitat fragmentation has caused restrictions to gene flow between populations. Gene diversity (HT = 0.317) is average for similar species but little is held within populations (HS = 0.168) and 46.9% of gene diversity is accounted for between populations. Estimates of gene flow are NM = 0.270 (based on FST) and NM = 0.129 (based on private alleles). Populations are substantially selfing (t = 0.111). Small isolated populations appears to be a long-term evolutionary condition in this species rather than a consequence of habitat fragmentation; however, population extinctions are occurring. Conservation will require the reservation of many populations to represent the genetic variation present in the species.


2018 ◽  
Author(s):  
Michelle F. DiLeo ◽  
Arild Husby ◽  
Marjo Saastamoinen

AbstractThere is now clear evidence that species across a broad range of taxa harbour extensive heritable variation in dispersal. While studies suggest that this variation can facilitate demographic outcomes such as range expansion and invasions, few have considered the consequences of intraspecific variation in dispersal for the maintenance and distribution of genetic variation across fragmented landscapes. Here we examine how landscape characteristics and individual variation in dispersal combine to predict genetic structure using genomic and spatial data from the Glanville fritillary butterfly. We used linear and latent factor mixed models to identify the landscape features that best predict spatial sorting of alleles in the dispersal-related gene phosphoglucose isomerase (Pgi). We next used structural equation modeling to test if variation in Pgi mediated gene flow as measured by Fst at putatively neutral loci. In a year when the population was expanding following a large decline, individuals with a genotype associated with greater dispersal ability were found at significantly higher frequencies in populations isolated by water and forest, and these populations showed lower levels of genetic differentiation at neutral loci. These relationships disappeared in the next year when metapopulation density was high, suggesting that the effects of individual variation are context dependent. Together our results highlight that 1) more complex aspects of landscape structure beyond just the configuration of habitat can be important for maintaining spatial variation in dispersal traits, and 2) that individual variation in dispersal plays a key role in maintaining genetic variation across fragmented landscapes.Impact summaryUnderstanding how fragmentation affects dispersal and gene flow across human-modified landscapes has long been a goal in evolutionary biology. It is typically assumed that individuals of the same species respond to the landscape in the same way, however growing evidence suggests that individuals can vary considerably in their dispersal traits. While the effects of this individual dispersal variation on range expansions and invasions have been well-characterized, knowledge of how it might mediate genetic responses to landscape fragmentation are almost entirely lacking. Here we demonstrate that individual variation in dispersal is key to the maintenance of genetic variation during a population expansion following a large decline in a butterfly metapopulation. We further show that spatial variation in dispersal is not maintained by the configuration of habitat patches alone, but by a more complex genotype-environment interaction involving the landscape matrix (i.e. landscape features found between habitat patches). This challenges the simplified landscape representations typically used in studies of dispersal evolution that ignore heterogeneity in the landscape matrix. More broadly, our results highlight the interplay of adaptive and neutral processes across fragmented landscapes, suggesting that an understanding of species vulnerability to landscape fragmentation requires consideration of both.


Sign in / Sign up

Export Citation Format

Share Document