In Vitro Fluorescence, Toxicity and Phototoxicity Induced by δ-Aminolevulinic Acid (ALA) or ALA-Esters

2007 ◽  
Vol 71 (4) ◽  
pp. 447-454
Author(s):  
Sabine Eléouet ◽  
Nathalie Rousset ◽  
Jérôme Carré ◽  
Ludovic Bourré ◽  
Véronique Vonarx ◽  
...  
2000 ◽  
Vol 71 (4) ◽  
pp. 447 ◽  
Author(s):  
Sabine Eléouet ◽  
Nathalie Rousset ◽  
Jérôme Carré ◽  
Ludovic Bourré ◽  
Véronique Vonarx ◽  
...  

2021 ◽  
Vol 14 (3) ◽  
pp. 229
Author(s):  
Yo Shinoda ◽  
Daitetsu Kato ◽  
Ryosuke Ando ◽  
Hikaru Endo ◽  
Tsutomu Takahashi ◽  
...  

5-Aminolevulinic acid (5-ALA) is an amino acid derivative and a precursor of protoporphyrin IX (PpIX). The photophysical feature of PpIX is clinically used in photodynamic diagnosis (PDD) and photodynamic therapy (PDT). These clinical applications are potentially based on in vitro cell culture experiments. Thus, conducting a systematic review and meta-analysis of in vitro 5-ALA PDT experiments is meaningful and may provide opportunities to consider future perspectives in this field. We conducted a systematic literature search in PubMed to summarize the in vitro 5-ALA PDT experiments and calculated the effectiveness of 5-ALA PDT for several cancer cell types. In total, 412 articles were identified, and 77 were extracted based on our inclusion criteria. The calculated effectiveness of 5-ALA PDT was statistically analyzed, which revealed a tendency of cancer-classification-dependent sensitivity to 5-ALA PDT, and stomach cancer was significantly more sensitive to 5-ALA PDT compared with cancers of different origins. Based on our analysis, we suggest a standardized in vitro experimental protocol for 5-ALA PDT.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Hui Hua ◽  
Jiawei Cheng ◽  
Wenbo Bu ◽  
Juan Liu ◽  
Weiwei Ma ◽  
...  

Aim. To determine whether 5-aminolevulinic acid-based photodynamic therapy (ALA-PDT) is effective in combating ultraviolet A- (UVA-) induced oxidative photodamage of hairless mice skin in vivo and human epidermal keratinocytes in vitro. Methods. In in vitro experiments, the human keratinocyte cell line (HaCaT cells) was divided into two groups: the experimental group was treated with ALA-PDT and the control group was left untreated. Then, the experimental group and the control group of cells were exposed to 10 J/m2 of UVA radiation. ROS, O2− species, and MMP were determined by fluorescence microscopy; p53, OGG1, and XPC were determined by Western blot analysis; apoptosis was determined by flow cytometry; and 8-oxo-dG was determined by immunofluorescence. Moreover, HaCaT cells were also treated with ALA-PDT. Then, SOD1 and SOD2 were examined by Western blot analysis. In in vivo experiments, the dorsal skin of hairless mice was treated with ALA-PDT or saline-PDT, and then, they were exposed to 20 J/m2 UVA light. The compound 8-oxo-dG was detected by immunofluorescence. Conclusion. In human epidermal keratinocytes and hairless mice skin, UVA-induced oxidative damage can be prevented effectively with ALA-PDT pretreatment.


Blood ◽  
1959 ◽  
Vol 14 (4) ◽  
pp. 476-485 ◽  
Author(s):  
MOISES GRINSTEIN ◽  
ROBIN M. BANNERMAN ◽  
CARL V. MOORE

Abstract The experiments described in this communication demonstrate that C14-tagged protoporphyrin 9 can be incorporated into the heme during the biosynthesis of hemoglobin. 1. In vitro observations: (a) C14 protoporphyrin 9 was found to be incorporated into heme by hemolysates of chicken and human blood incubated at 37 C. The degree of incorporation by washed chicken erythrocytes was less, presumably because the protoporphyrin was not readily transferred across the cell membrane. Incorporation by hemolysates was inhibited completely at 1 x 10-2 M KCN at 4 C., markedly by 1 x 10-2 M KCN at 37 C. and partially by 1 x 10-3 M Pb at 37 C. (b) The degree of incorporation was reduced by the addition of an equivalent quantity of delta-aminolevulinic acid. Furthermore, the incorporation of glycine-2-C14 into heme was reduced by the addition of an equivalent quantity of protoporphyrin 9. 2. In vivo observations: Intravenously administered C14 protoporphyrin was incorporated into the circulating hemoglobin of two rabbits with a phenylhydrazine-induced hemolytic anemia. These observations provide support for the view that protoporphyrin 9 itself is a true direct precursor of hemoglobin, in the biosynthetic pathway between porphobilinogen and heme. Comparative studies of rates of incorporation of C14 protoporphyrin 9 and its precursors into heme in vitro may provide a useful tool for the study of heme synthesis in normal and pathologic conditions. For instance, it was shown that hemolysates from the blood of patients with thalassemia major, with poor iron and glycine utilization, rapidly incorporated the tagged protoporphyrin into heme.


RSC Advances ◽  
2016 ◽  
Vol 6 (92) ◽  
pp. 89492-89498 ◽  
Author(s):  
Gabriel F. Gola ◽  
Gabriela M. Di Venosa ◽  
Daniel A. Sáenz ◽  
Gustavo H. Calvo ◽  
Gabriela M. Cabrera ◽  
...  

A chemically diverse set of 5-aminolevulinic acid prodrugs were obtained via a Passerini reaction and studied as photodinamic agents in vitro.


2000 ◽  
Vol 72 (2) ◽  
pp. 186 ◽  
Author(s):  
Saulius Bagdonas ◽  
Li-Wei Ma ◽  
Vladimir Iani ◽  
Ricardas Rotomskis ◽  
Petras Juzenas ◽  
...  

2015 ◽  
Vol 16 (12) ◽  
pp. 9936-9948 ◽  
Author(s):  
Mustafa El-Khatib ◽  
Carolin Tepe ◽  
Brigitte Senger ◽  
Maxine Dibué-Adjei ◽  
Markus Riemenschneider ◽  
...  

1994 ◽  
Vol 15 (10) ◽  
pp. 2241-2244 ◽  
Author(s):  
Cesar G. Fraga ◽  
Janice Onuki ◽  
Florencia Lucesoli ◽  
Etelvino J.H. Bechara ◽  
Paolo Di Mascio
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document