scholarly journals FINITE ELEMENT ANALYSIS OF DISSIMILAR WELDING BETWEEN NEWLY DEVELOPED CR-FREE NICKEL BASED WELDING ELECTRODE AND STAINLESS STEEL AISI 304

2013 ◽  
Vol 02 (09) ◽  
pp. 130-135 ◽  
Author(s):  
Nataraj. J.R .
Author(s):  
Valentin Mereuta

Abstract: In this work the 3D model of the camshaft was done using Autodesk Inventor version 2021 with the literature data and finite element analysis is performed by applying restrictions and loads conditions, first by the absence of the torque and then by applying the torque. Three materials were analyzed in both situations: Cast Iron, Stainless Steel AISI 202 and Steel Alloy. Following the comparative study for the three materials, it can be specified the importance of the material for the construction of the camshaft. Keywords: Camshaft, Static analysis, Autodesk Inventor


2020 ◽  
Vol 4 (4) ◽  
pp. 115
Author(s):  
João P. M. Pragana ◽  
Stephan Rosenthal ◽  
Ivo M. F. Bragança ◽  
Carlos M. A. Silva ◽  
A. Erman Tekkaya ◽  
...  

The objective of this paper is to present a new hybrid additive manufacturing route for fabricating collector coins with complex, intricate contoured holes. The new manufacturing route combines metal deposition by additive manufacturing with metal cutting and forming, and its application is illustrated with an example consisting of a prototype coin made from stainless steel AISI 316L. Experimentation and finite element analysis of the coin minting operation with the in-house computer program i-form show that the blanks produced by additive manufacturing and metal cutting can withstand the high compressive pressures that are attained during the embossing and impressing of lettering and other reliefs on the coin surfaces. The presentation allows concluding that hybrid additive manufacturing opens the way to the production of innovative collector coins with geometric features that are radically different from those that are currently available in the market.


Author(s):  
Gurinder Singh Brar ◽  
Rakesh Kumar

Welding is one of the most commonly used permanent joining processes in the piping and pressure vessel industry. During welding a very complex thermal cycle is applied to the weldment, which in turn causes irreversible elastic-plastic deformation and consequently gives rise to the residual stresses in and around fusion zone and heat affected zone (HAZ). Presence of residual stresses may be beneficial or harmful for the structural components depending on the nature and magnitude of stresses. The beneficial effect of compressive stresses have been widely used in industry as these are believed to increase fatigue strength of the component and reduce stress corrosion cracking and brittle fracture. In large steel fabrication industries such as shipbuilding, marine structures, aero-space industry, high speed train guide ways and pressure vessels and piping in chemical and petrochemical industry the problem of residual stresses and overall distortion has been and continue to be a major issue. It is well established fact that material response of structural components is substantially affected by the residual stresses when subjected to thermal and structural loads. Due to these residual stresses produced in and around the weld zone the strength and life of the component is reduced. As AISI 304 stainless steel has excellent properties like better corrosion resistance, high ductility, excellent drawing, forming and spinning properties, so it is almost used in all types of application like chemical equipment, flatware utensils, coal hopper, kitchen sinks, marine equipment etc. But because of the problems of residual stresses during the time of welding it is very essential to understand the behavior and nature of AISI 304 stainless steel material. So in order to overcome all these problems a 3-dimensional finite element model is developed in a commercially available FEA code by drafting an approximate geometry of the butt welded joint and then the finite element analysis is performed, so that one can understand the complete nature of residual stresses in butt welding of AISI 304 stainless steel plate. In this paper, butt welding simulations were performed on two AISI 304 stainless steel plates by gas tungsten arc welding (GTAW). Analysis of butt welded joint by commercially available finite element analysis code showed that butt weld produced by GTAW resulted in 782.84 MPa of residual stress in plates. In addition, the residual stress is plotted against axial distance to have a clear picture of the magnitude of residual stress in and around weld area.


Author(s):  
James K. Wilkins

A project has been conducted to verify a finite element analysis procedure for studying the nonlinear behavior of 90°, stainless steel, 4 inch schedule 10, butt welding elbows. Two displacement controlled monotonic in-plane tests were conducted, one closing and one opening, and the loads, displacements, and strains at several locations were recorded. Stacked 90° tee rosette gages were used in both tests because of their ability to measure strain over a small area. ANSYS shell element 181 was used in the FEA reconciliations. The FEA models incorporated detailed geometric measurements of the specimens, including the welds, and material stress-strain data obtained from the attached straight piping. Initially, a mesh consisting of sixteen elements arrayed in 8 rings was used to analyze the elbow. The load-displacement correlation was quite good using this mesh, but the strain reconciliation was not. Analysis of the FEA results indicated that the axial and hoop strain gradients across the mid-section of the elbow were very high. In order to generate better strain correlations, the elbow mesh was refined in the mid-section of the elbow to include 48 elements per ring and an additional six rings, effectively increasing the element density by nine times. Using the refined mesh produced much better correlations with the strain data.


Sign in / Sign up

Export Citation Format

Share Document