scholarly journals On the elastoplastic stability problem of the thin round cylindrical shells subjected to complex loading processes with the various kinematic boundary conditions

2004 ◽  
Vol 26 (1) ◽  
pp. 11-22
Author(s):  
Dao Van Dung

In this paper, the elastoplastic stability of cylindrical shells simultaneously subjected to compression force along the generatrix and external pressure has been presented. Two types of considered kinematic boundary conditions are simply supported and clamped at the butt-ends. The expressions for determining the critical forces by using the Bubnov-Galerkin method [3] have been established. The sufficient condition of extremum for a long cylindrical shell also is considered. Some results of numerical calculation have been also given and discussed.

Author(s):  
Muzamal Hussain ◽  
Muhammad Nawaz Naeem ◽  
Mohammad Reza Isvandzibaei

In this paper, vibration characteristics of rotating functionally graded cylindrical shell resting on Winkler and Pasternak elastic foundations have been investigated. These shells are fabricated from functionally graded materials. Shell dynamical equations are derived by using the Hamilton variational principle and the Langrangian functional framed from the shell strain and kinetic energy expressions. Elastic foundations, namely Winkler and Pasternak moduli are inducted in the tangential direction of the shell. The rotational motions of the shells are due to the Coriolis and centrifugal acceleration as well as the hoop tension produced in the rotating case. The wave propagation approach in standard eigenvalue form has been employed in order to derive the characteristic frequency equation describing the natural frequencies of vibration in rotating functionally graded cylindrical shell. The complex exponential functions, with the axial modal numbers that depend on the boundary conditions stated at edges of a cylindrical shell, have been used to compute the axial modal dependence. In our new investigation, frequency spectra are obtained for circumferential wave number, length-to-radius ratio, height-to-radius ratio with simply supported–simply supported and clamped–clamped boundary conditions without elastic foundation. Also, the effect of elastic foundation on the rotating cylindrical shells is examined with the simply supported–simply supported edge. To check the validity of the present method, the fundamental natural frequencies of non-rotating isotropic and functionally graded cylindrical shells are compared with the open literature. Also, a comparison is made for infinitely long rotating with the earlier published paper.


2001 ◽  
Vol 23 (2) ◽  
pp. 69-86
Author(s):  
Dao Van Dung

The system of stability equations of elasto plastic cylindrical shell made of compressible material was established in work [3]. In the present paper, we study the solution of the problems and methods for determining the critical load. The obtained results describe the influence of the compressibility of material on the stability of the shell. When a material is incompressible, these results red.uce to the previous well-known ones (see [1, 2, 4, 5]).


1997 ◽  
Vol 4 (3) ◽  
pp. 193-198 ◽  
Author(s):  
C.T. Loy ◽  
K.Y. Lam ◽  
C. Shu

The analysis of cylindrical shells using an improved version of the differential quadrature method is presented. The generalized differential quadrature (GDQ) method has computational advantages over the existing differential quadrature method. The GDQ method has been applied in solutions to fluid dynamics and plate problems and has shown superb accuracy, efficiency, convenience, and great potential in solving differential equations. The present article attempts to apply the method to the solutions of cylindrical shell problems. To illustrate the implementation of the GDQ method, the frequencies and fundamental frequencies for simply supported-simply supported, clamped-clamped, and clamped-simply supported boundary conditions are determined. Results obtained are validated by comparing them with those in the literature.


1974 ◽  
Vol 96 (4) ◽  
pp. 1322-1327
Author(s):  
Shun Cheng ◽  
C. K. Chang

The buckling problem of circular cylindrical shells under axial compression, external pressure, and torsion is investigated using a displacement function φ. A governing differential equation for the stability of thin cylindrical shells under combined loading of axial compression, external pressure, and torsion is derived. A method for the solutions of this equation is also presented. The advantage in using the present equation over the customary three differential equations for displacements is that only one trial solution is needed in solving the buckling problems as shown in the paper. Four possible combinations of boundary conditions for a simply supported edge are treated. The case of a cylinder under axial compression is carried out in detail. For two types of simple supported boundary conditions, SS1 and SS2, the minimum critical axial buckling stress is found to be 43.5 percent of the well-known classical value Eh/R3(1−ν2) against the 50 percent of the classical value presently known.


2019 ◽  
Vol 25 (18) ◽  
pp. 2494-2508 ◽  
Author(s):  
Ahmad Reza Ghasemi ◽  
Mohammad Meskini

In this research, investigations are presented of the free vibration of porous laminated rotating circular cylindrical shells based on Love’s shell theory with simply supported boundary conditions. The equilibrium equations for circular cylindrical shells are obtained using Hamilton’s principle. Also, Navier’s solution is used to solve the equations of the cylindrical shell due to the simply supported boundary conditions. The results are compared with previous results of other researchers. The numerical result of this study indicates that with increase of the porosity coefficient the nondimensional backward and forward frequency decreased. Then the results of the free vibration of rotating cylindrical shells are presented in terms of the effects of porous coefficients, porous type, length to radius ratio, rotating speed, and axial and circumferential wave numbers.


2018 ◽  
Vol 18 (10) ◽  
pp. 1850123 ◽  
Author(s):  
Hamed Safarpour ◽  
Kianoosh Mohammadi ◽  
Majid Ghadiri ◽  
Mohammad M. Barooti

This article investigates the flexural vibration of temperature-dependent and carbon nanotube-reinforced (CNTR) cylindrical shells made of functionally graded (FG) porous materials under various kinds of thermal loadings. The equivalent material properties of the cylindrical shell of concern are estimated using the rule of mixture. Both the cases of uniform distribution (UD) and FG distribution patterns of reinforcements are considered. Thermo-mechanical properties of the cylindrical shell are supposed to vary through the thickness and are estimated using the modified power-law rule, by which the porosities with even and uneven types are approximated. As the porosities occur inside the FG materials during the manufacturing process, it is necessary to consider their impact on the vibration behavior of shells. The present study is featured by consideration of different types of porosities in various CNT reinforcements under various boundary conditions in a single model. The governing equations and boundary conditions are developed using Hamilton's principle and solved by the generalized differential quadrature method. The accuracy of the present results is verified by comparison with existing ones and those by Navier's method. The results show that the length to radius ratio and temperature, as well as CNT reinforcement, porosity, thermal loading, and boundary conditions, play an important role on the natural frequency of the cylindrical shell of concern in thermal environment.


2020 ◽  
Vol 8 (6) ◽  
pp. 4362-4366

Thin shell structures have very high load bearing capacity, hence find wide applications in the field of mechanical engineering, structural engineering, sea shore structures, aerospace industries and nuclear engineering structures. The major failure of thin shell structures is buckling. Oil carrying pipelines, hull structures, oil tankers are few examples in which thin cylindrical shell structures fails by buckling under external pressure loading. In order to avoid the buckling failure, prediction of critical buckling pressure is important in thin shell structures under external pressure. But this critical buckling pressure depends on boundary conditions, imperfections, thickness variation of shells etc. To estimate the effects of these parameters on Critical Buckling Pressure (CBP) require a reliable experimental test rig. Hence in our proposed work, efforts are taken to develop a simple cost-effective reliable test rig to determine the effects of these parameter variations on the critical buckling pressure. For developing the test rig two important components to be designed properly namely, external cover cylinder and online pressure measurement system. The external cover cylinder with lid which contains test cylindrical shell inside should be designed in such a way that it should be leak proof and rigid so as to withstand the internal working pressure with negligible deformations. Hence, a ring and stinger stiffened cylindrical shell is taken as external cylindrical shell. The pressure variation in the test rig should be recorded online so as to predict the critical buckling pressure accurately. Hence, PC interfaced microcontroller-based pressure measurement system is developed in our proposed work. The test cylinder considered for this work is made of mild steel of size diameter 456 mm, length 456 mm and thickness 1 mm. The classical (simply supported) boundary conditions are assumed and simulated on both sides of the test cylinders. The experimental critical buckling pressures are compared with the FE results and both the results have good agreement


Sign in / Sign up

Export Citation Format

Share Document