scholarly journals Assessment of heavy metal concentrations and its potential eco-toxic effects in soils and sediments in Dong Cao catchment, Northern Vietnam

2020 ◽  
Vol 42 (2) ◽  
pp. 187-204
Author(s):  
Huong Mai ◽  
Jean -Luc Maeghtb ◽  
Van Hoi Bui ◽  
Christian Valentin

The environmental risks associated with the concentration of metals in soils and sediments due to their toxicological properties on living organisms are not yet sufficiently studied in North Vietnam. Soil samples and sediments collected from three weirs (W1, W2 and W4) of the Dong Cao catchment (49.7 ha) and from the downstream Cua Khau reservoir (CK) were analyzed for heavy metal concentrations and geochemical parameters. Bioassays were then applied to assess the toxicity of these soils and sediments based on a test of phytotoxicity with garden cress (Lepidium savitum) and the BioTox test for toxicity to bacteria, using Allivibrio fischeri. Metal concentrations in sediments (Cr and Cu) were significantly higher in the Dong Cao catchment (W1 and W4) in comparison with the reservoir area. The toxicity of soils and sediments of W1 and W4 was detected at a low level by the two bioassay tests. Inhibition of light emission by Allivibrio fischeri was slightly reduced for soils and sediments of W1 and W4 after 15-min of the contact. Similarly, this slight impact has been reflected in the growth and seed germination of Lepidium savitum in the sediment samples collected from the weirs of Dong Cao catchment. The major pollutant metals were Cr, Cu and Zn. Cr contamination is undoubtedly derived from rocks whereas Cu and Zn are most likely associated with human activities (local agricultural inputs and atmospheric fallout).

2013 ◽  
Vol 726-731 ◽  
pp. 1801-1804 ◽  
Author(s):  
Shu Min Wang ◽  
Hui Yu

In order to know the characteristic of spatial and temporal distribution of heavy metal concentrations in urban stormwater runoff, rainfall runoff from impervious underlying surfaces in urban region was observed during rain events. Results showed that during the precipitation process, heavy metal concentrations decreased gradually temporally (except Cd); concentrations of Fe, Cu and Zn meet Class III standard of Environmental Quality Standards for Surface Water in terminal runoff, but concentrations of Cd and Pb go beyond this standard far. Heavy metal concentrations in runoff from different types of landuses were significantly different. The arithmetic average concentrations of Fe, Cd, Cu and Zn in stormwater runoff from roof (e.g.,34.4mg/L, 0.15mg/L, 1.25mg/L and 1.23mg/L, respectively) were obviously higher than that in stormwater runoff from road (e.g., 11.8mg/L, 0.05mg/L, 0.13mg/L and 0.69mg/L, respectively).


2019 ◽  
Vol 28 (5) ◽  
pp. 3721-3733
Author(s):  
Nhon Hoai ◽  
Thanh Duc ◽  
Huy Van ◽  
Hai Son ◽  
Ha Manh ◽  
...  

Author(s):  
Faisal Hamzah

In this study, the concentrations of three kinds of heavy metals, namely Pb, Zn, and Cu from 3 species of mangrove that grow in Muara Angke were measured and analyzed. Our result showed that substrate of mangrove ecosystem in Muara Angke was dominated by clay (30.5% - 62.4%), silt (21.7% -35.6%), and sand (2% -39.5%). The heavy metals accumulation in roots is higher than in sediment, water and leaves with concentration of Zn as the highest. Bioconcentration Factor (BCF; content ratio of heavy metal concentrations in roots or leaves and sediment) and Translocation Factor (TF; ratio of heavy metal concentrations in leaves and roots) of non-essential heavy metals (Pb) is higher in leaves than in roots, but for essential heavy metals (Zn and Cu), the BCF and TF was higher in roots than in leaves. TF values for heavy metals Pb, Cu, and Zn were 0.98-2.59, 0.17-0.51, and 0.52-0.86, respectively. The values of root BCF of those three heavy metals were 0.71-3.17, 0.27-0.74, and 0.95-1.53, while the values of leaf BCF were 1.84-3.45, 0.07-0.34, and 0.72-1.19, respectively. Furthermore, by calculating the phytoremediation (FTD), i.e. the difference between BCF and TF, it is obtained that Sonneratia caseolaris and Avicennia marina can be used in phytoremidiation, with leaves and roots FTD of 1.93 and 2.09, respectively for Sonneratia caseolaris and 1.93 and 1.98 for Avicennia marina.Keywords: heavy metals, mangroves, phytoremidiation, Muara Angke, bioconcentration factor, translocation factor


1997 ◽  
Vol 59 (3) ◽  
pp. 163-174 ◽  
Author(s):  
D.J. Huisman ◽  
F.J.H. Vermeulen ◽  
J. Baker ◽  
A. Veldkamp ◽  
S.B. Kroonenberg ◽  
...  

2010 ◽  
Vol 2 (2) ◽  
Author(s):  
Faisal Hamzah

<p>In this study, the concentrations of three kinds of heavy metals, namely Pb, Zn, and Cu from 3 species of mangrove that grow in Muara Angke were measured and analyzed. Our result showed that substrate of mangrove ecosystem in Muara Angke was dominated by clay (30.5% - 62.4%), silt (21.7% -35.6%), and sand (2% -39.5%). The heavy metals accumulation in roots is higher than in sediment, water and leaves with concentration of Zn as the highest. Bioconcentration Factor (BCF; content ratio of heavy metal concentrations in roots or leaves and sediment) and Translocation Factor (TF; ratio of heavy metal concentrations in leaves and roots) of non-essential heavy metals (Pb) is higher in leaves than in roots, but for essential heavy metals (Zn and Cu), the BCF and TF was higher in roots than in leaves. TF values for heavy metals Pb, Cu, and Zn were 0.98-2.59, 0.17-0.51, and 0.52-0.86, respectively. The values of root BCF of those three heavy metals were 0.71-3.17, 0.27-0.74, and 0.95-1.53, while the values of leaf BCF were 1.84-3.45, 0.07-0.34, and 0.72-1.19, respectively. Furthermore, by calculating the phytoremediation (FTD), i.e. the difference between BCF and TF, it is obtained that Sonneratia caseolaris and Avicennia marina can be used in phytoremidiation, with leaves and roots FTD of 1.93 and 2.09, respectively for Sonneratia caseolaris and 1.93 and 1.98 for Avicennia marina.</p><p>Keywords: heavy metals, mangroves, phytoremidiation, Muara Angke, bioconcentration factor, translocation factor</p>


2020 ◽  
Vol 42 (1) ◽  
pp. 228-232
Author(s):  
I. O. Taiwo ◽  
O. A. Olopade ◽  
A. F. Gafar

The concentration of heavy metals(Zn, Ni, Pb, Cd and Cu) in the muscle of three fishery organisms (Chrysicththysnigrodigitatus, Sarotherodongalilaeus and Peneausmonodon)and in environmental samples of waterand sediment were tested in Yewa Lagoon, Nigeria. Five fishing villages along the lagoon were selected as the sample sites where these metals were tested. The heavy metal content in the muscle of the fishery organisms was Zn > Ni >Pb> Cu > Cd;Zn > Ni >Pb> Cd > Cu and Zn > Ni >Pb> Cd > Cu inC.nigrodigitatus, S.galilaeus and P.monodon respectively. The heavy metal concentrations in the sediment was Zn >Pb> Cu > Ni > Cd. However, nickel and cadmium were not present in the water at two sampling sitesof Yewa Lagoon.The water of Yewa Lagoon is polluted with all the five heavy metals which were all higher than the WHO standard. The concentration of Zinc in the fishery organisms were below the WHO standard. However, the high concentration of zinc in the water (which is well above the WHO standard) could be associated with the fact that zinc is naturally abundant in Nigeria soils.


2021 ◽  
Author(s):  
Yanping Wang ◽  
Peng Qian ◽  
Dongming Li ◽  
Haifeng Chen ◽  
Xiangqian Zhou

Abstract Heavy metal contamination in ground dust presents potential environmental and human health threats. However, the heavy metal contamination status of ground dust in the vicinity of public point utilities remain poorly explored. Therefore, this study has been designed to analyze the heavy metal contaminations in the ground dust collected monthly near a public bronze sculpture in an urban campus of Nantong, China, using geo-accumulation indexes (Igeo), enrichment factors (EF), potential ecological risk indexes (RI), and health risks (non-carcinogenic risks-HI and carcinogenic risks-CR). This study revealed that the maximum Cr, Cu, Mn, Ni, Pb, and Zn concentrations in ground dust samples were 156.2, 708.8, 869.8, 140.8, 180.5, and 1089.7 mg kg-1 respectively in which the mean Cu and Zn concentrations were 9 and 7 times higher than the background level in soil. Temporally speaking, for the majority of heavy metals (with the exception of Ni), the high concentration seasons tend to mainly be the summer and autumn, as indicated by the higher Xlf and SIRM values during those seasons. It was observed that Cu and Zn exhibited significant enrichment (EF = 11.7 and 8.4, respectively), moderate to strong pollution (Igeo = 2.4 and 2.0, respectively), and moderate and low potential ecological risks (Eir = 45.6 and 6.6, respectively). The non-carcinogenic risks which adults exposed to the heavy metal concentrations suffered were found to be insignificant. However, the carcinogenic risks related to Ni (1.3E-04) had exceeded the acceptable level. Based on the obtained PCA and correlation analysis, the heavy metal concentrations in the ground dust of urban campuses could be related to public utilities, traffic-related exhaust sources, and industrial activities. This study’s findings demonstrated that urban public utilities require increased attention due to their significant enrichment, ecological risk factors, and the significant carcinogenic risks to the population.


1985 ◽  
Vol 36 (2) ◽  
pp. 169 ◽  
Author(s):  
V Talbot

Ranges of concentrations (mg kg-1 wet wt) of Ag (0-0.4), Cd (0-0.8), Co (not detected), Cr (0-0.8), Mn (0.4-3.2), Ni (0.2-1 .7) and Pb (0-1 .7) were determined in S. cuccullata and Saccostrea sp. (probably S. commercialis) from several locations in the Dampier Archipelago and nearby Cape Lambert. Concentrations of Cu and Zn in individual specimens of these oysters ranged from 1.4 to 555 and from 55 to 1800 mg kg-1 wet weight, respectively, reached their maximum values at localized areas adjacent to the Dampier township and iron-ore exporting terminals at Dampier and Cape Lambert, and correlated significantly with length and wet weight. Fe concentrations in individual oysters throughout the Archipelago, which is the centre of an iron-ore exporting industry, ranged from 4.2 to 1629 mg kg-1 wet weight and did not correlate significantly with oyster length or wet weight.


Geologija ◽  
2008 ◽  
Vol 50 (4) ◽  
pp. 237-245 ◽  
Author(s):  
Audronė Jankaitė ◽  
Pranas Baltrėnas ◽  
Agnė Kazlauskienė

Sign in / Sign up

Export Citation Format

Share Document