scholarly journals Re-examination of Two Zero Texture of Neutrino Mass Matrix After Neutrino-2012

2013 ◽  
Vol 23 (3) ◽  
pp. 211
Author(s):  
Nguyen Thanh Phong

We re-study the seven neutrino mass matrices with two independent vanishing entries under the latest results of neutrino oscillation experiments after the neutrino - 2012 conference. It is shown that the pattern B 1 could be excluded since this pattern realizes very small value of mixing angle theta13. The remain six textures satisfy the current experimental data. We also find that all seven textures of neutrino mass matrix possess the normal hierarchy of neutrino mass spectrum. 

2012 ◽  
Vol 27 (28) ◽  
pp. 1250159 ◽  
Author(s):  
P. M. FERREIRA ◽  
L. LAVOURA

We suggest a simple model, based on the type-I seesaw mechanism, for the lepton mass matrices. The model hinges on an Abelian symmetry which leads to mass matrices with some vanishing matrix elements. The model predicts one massless neutrino and Meμ = 0 (M is the effective light-neutrino Majorana mass matrix). We show that these predictions agree with the present experimental data if the neutrino mass spectrum is inverted, i.e. if m3 = 0, provided the Dirac phase δ is very close to maximal (±π/ 2). In the case of a normal neutrino mass spectrum, i.e. when m1 = 0, the agreement of our model with the data is imperfect — the reactor mixing angle θ13 is too small in our model. Minimal leptogenesis is not an option in our model due to the vanishing elements in the Yukawa-coupling matrices.


2014 ◽  
Vol 29 (33) ◽  
pp. 1450179
Author(s):  
G. K. Leontaris ◽  
N. D. Vlachos

We investigate the possibility of expressing the charged leptons and neutrino mass matrices as linear combinations of elements of a single finite group. Constraints imposed on the resulting mixing matrix by current data restrict the group types, but allow a nonzero value for the θ13 mixing angle.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Madan Singh

In the light of latest neutrino oscillation data, we have investigated the one-zero Majorana neutrino mass matrix Mν with zero sum condition of mass eigenvalues in the flavor basis, where charged lepton mass matrix is diagonal. Among the six possible one-zero cases, it is found that only five can survive the current experimental data, while case with (1, 1) vanishing element of Mν is ruled out, if zero trace condition is imposed at 3σ confidence level (CL). Numerical and some approximate analytical results are presented.


2006 ◽  
Vol 84 (6-7) ◽  
pp. 621-623
Author(s):  
C S Lam

In the basis where the charged lepton mass matrix is diagonal, the left-handed neutrino mass matrix is invariant under the permutation of the second and third generations if, and only if, the reactor angle θ13 is zero and the atmospheric mixing angle θ23 is maximal. In the presence of the seesaw mechanism, this symmetry leads to an inverted hierarchy, with m3 = 0. This inverted mass spectrum is doubly protected if the right-handed neutrinos also have a 2–3 symmetry.PACS No.: 14.60Pq


2011 ◽  
Vol 26 (07) ◽  
pp. 501-514 ◽  
Author(s):  
S. DEV ◽  
SHIVANI GUPTA ◽  
RADHA RAMAN GAUTAM

We study the existence of one/two texture zeros or one/two vanishing minors in the neutrino mass matrix with μτ symmetry. In the basis where the charged lepton mass matrix and the Dirac neutrino mass matrix are diagonal, the one/two zeros or one/two vanishing minors on the right-handed Majorana mass matrix having μτ symmetry will propagate via seesaw mechanism as one/two vanishing minors or one/two texture zeros in the neutrino mass matrix with μτ symmetry respectively. It is found that only five such texture structures of the neutrino mass matrix are phenomenologically viable. For tribimaximal mixing, these texture structures reduce the number of free parameters to one. Interesting predictions are obtained for the effective Majorana mass Mee, the absolute mass scale and the Majorana-type CP violating phases.


2014 ◽  
Vol 29 (22) ◽  
pp. 1450108 ◽  
Author(s):  
Debasish Borah

We discuss the possible origin of nonzero reactor mixing angle θ13 and Dirac CP phase δ CP in the leptonic sector from a combination of type I and type II seesaw mechanisms. Type I seesaw contribution to neutrino mass matrix is of tri-bimaximal (TBM) type which gives rise to vanishing θ13 leaving the Dirac CP phase undetermined. If the Dirac neutrino mass matrix is assumed to take the diagonal charged lepton (CL) type structure, such a TBM type neutrino mass matrix originating from type I seesaw corresponds to real values of Dirac Yukawa couplings in the terms [Formula: see text]. This makes the process of right-handed heavy neutrino decay into a light neutrino and Higgs (N → νH) CP preserving ruling out the possibility of leptogenesis. Here we consider the type II seesaw term as the common origin of nonzero θ13 and δ CP by taking it as a perturbation to the leading order TBM type neutrino mass matrix. First, we numerically fit the type I seesaw term by taking oscillation as well as cosmology data and then compute the predictions for neutrino parameters after the type II seesaw term is introduced. We consider a minimal structure of the type II seesaw term and check whether the predictions for neutrino parameters lie in the 3σ range. We also compute the predictions for baryon asymmetry of the universe by considering type II seesaw term as the only source of CP violation and compare it with the latest cosmology data.


2011 ◽  
Vol 26 (08) ◽  
pp. 567-574 ◽  
Author(s):  
ASAN DAMANIK

We construct a neutrino mass matrix Mν via a seesaw mechanism with perturbed invariant under a cyclic permutation by introducing a parameter δ into the diagonal elements of Mν with the assumption that trace of the perturbed Mν is equal to trace of the unperturbed Mν. We found that the perturbed neutrino mass matrices Mν can predict the mass-squared difference [Formula: see text] with the possible hierarchy of neutrino mass is normal or inverted hierarchy. By using the advantages of the mass-squared differences and mixing parameters data from neutrino oscillation experiments, we then have neutrino masses in inverted hierarchy with masses: |m1| = 0.101023 eV , |m2| = 0.101428 eV and |m3| = 0.084413 eV .


Sign in / Sign up

Export Citation Format

Share Document