scholarly journals Molecular characterization of submergence tolerance genes and locus in the deep-water rice cultivars

2020 ◽  
Vol 16 (4) ◽  
pp. 633-639
Author(s):  
Nguyen Van Cuu ◽  
Nguyen Van Khiem ◽  
Pham Xuan Hoi

Most of the rice cultivars exhibit suspension of growth when submerged to overcome the reduced availability of oxygen. When the situation continues, majority of the cultivars unable to recover after the flood recedes. However, there are fortunately some rice genotypes that can withstand such submerged condition for up to two weeks by adapting two totally opposite mechanisms. One type of cultivars elongates enormously at a very short span of time and the leaves come above the water level. In the second type, they remain under water without any growth. Cultivars of both types tolerate the submergence but the first category easily lodges when flood water recede. In those lines, yields are reduced drastically. In this study, we focus on characterize the genetic variation at the Sub1 locus and to associate its relevance, if any, to submergence tolerance among the deep water landraces. As a first step, seeds of some rice cultivars collected from North-east Indian regions were initially selected for the characterization of genetic variation. The PCR based analysis involving several genes known to be associated with submergence tolerance did not reveal much difference. However, Southern hybridization revealed certain differences between submergence tolerant and susceptible cultivars. Although we did not notice major difference with regard to Sub1 genes when tried with EcoRI and BamHI, differences were noticed with adh1 and RAmy3C genes. Representative, Southern analysis showed the genetic variation among the deep-water cultivars as compared to Swarna and Sub1-Swarna. It is possible that deep-water rice cultivars may not differ in their genome at Sub1 locus but they respond through SNORKEL genes under submergence.

2015 ◽  
Vol 30 (2) ◽  
pp. 59-70 ◽  
Author(s):  
Diganta Das ◽  
Maitreyee Sharma ◽  
Hemanga Kumar Das ◽  
Partha Pratim Sahu ◽  
Robin Doley

Pleione ◽  
2017 ◽  
Vol 11 (2) ◽  
pp. 455
Author(s):  
V. Saio ◽  
H. Tynsong ◽  
Shahida P. Quazi ◽  
V. P. Upadhyay ◽  
S. K. Aggarwal

2005 ◽  
Vol 49 (5) ◽  
pp. 1957-1964 ◽  
Author(s):  
Susanna K. P. Lau ◽  
Pak-leung Ho ◽  
Maria W. S. Li ◽  
Hoi-wah Tsoi ◽  
Raymond W. H. Yung ◽  
...  

ABSTRACT Laribacter hongkongensis, a newly discovered bacterium recently shown to be associated with community-acquired gastroenteritis, is generally resistant to most β-lactams except the carbapenems. We describe the cloning and characterization of a novel chromosomal class C β-lactamase and its regulatory gene in L. hongkongensis. Two genes, ampC and ampR, were cloned by inserting restriction fragments of genomic DNA from L. hongkongensis strain HLHK5 into pBK-CMV to give the recombinant plasmid pBK-LHK-5. The ampR and ampC genes and their promoters were divergently oriented, with the ampR gene immediately upstream of the ampC gene and an intercistronic Lys-R motif, typical of inducible ampC-ampR regulatory systems. The deduced amino acid sequence of the cloned AmpC β-lactamase (pI 8.1) contained consensus motifs characteristic of class C β-lactamases but had identities no greater than 46% to known class C β-lactamases. The kinetic properties of this AmpC were also compatible with those of a class C β-lactamase. PCR of 20 clinical isolates of L. hongkongensis, including HLHK5, showed the presence of both ampC and ampR genes in all isolates. Southern hybridization suggested that the ampC gene of HLHK5 was chromosomally encoded. Subcloning experiments showed that the expression of the ampC gene of HLHK5 was regulated by its ampR gene, which acts as a repressor. The β-lactamase characterized from strain HLHK5 was named LHK-5 (gene, bla LHK-5) and represents the first example of AmpC β-lactamase in the β subdivision of proteobacteria.


Genetics ◽  
1998 ◽  
Vol 150 (2) ◽  
pp. 945-956 ◽  
Author(s):  
Hong-Wen Deng

Abstract Deng and Lynch recently proposed estimating the rate and effects of deleterious genomic mutations from changes in the mean and genetic variance of fitness upon selfing/outcrossing in outcrossing/highly selfing populations. The utility of our original estimation approach is limited in outcrossing populations, since selfing may not always be feasible. Here we extend the approach to any form of inbreeding in outcrossing populations. By simulations, the statistical properties of the estimation under a common form of inbreeding (sib mating) are investigated under a range of biologically plausible situations. The efficiencies of different degrees of inbreeding and two different experimental designs of estimation are also investigated. We found that estimation using the total genetic variation in the inbred generation is generally more efficient than employing the genetic variation among the mean of inbred families, and that higher degree of inbreeding employed in experiments yields higher power for estimation. The simulation results of the magnitude and direction of estimation bias under variable or epistatic mutation effects may provide a basis for accurate inferences of deleterious mutations. Simulations accounting for environmental variance of fitness suggest that, under full-sib mating, our extension can achieve reasonably well an estimation with sample sizes of only ∼2000-3000.


Caryologia ◽  
2010 ◽  
Vol 63 (1) ◽  
pp. 99-105 ◽  
Author(s):  
Santosh Kumar Sharma ◽  
Khedasana Rajkumari ◽  
Suman Kumaria ◽  
Pramod Tandon ◽  
Satyawada Rama Rao

2000 ◽  
Vol 28 (1-2) ◽  
pp. 9-16 ◽  
Author(s):  
Beatrix Rethati ◽  
Klara Dallmann ◽  
Ibolya K. Simon ◽  
Andor Balint ◽  
Bela Szajani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document