scholarly journals Iron-reducing - and -proteobacteria isolated from laboratory-scaled heterotrophic feammox bioreactor

2021 ◽  
Vol 19 (2) ◽  
pp. 359-369
Author(s):  
Le Phuong Chung ◽  
Nguyen Thi Hai ◽  
Nguyen Huynh Minh Quyen ◽  
Pham The Hai ◽  
Dinh Thuy Hang

Ammonium removal from wastewater is a crucial step in wastewater treatment. Presently employed technologies based on nitrification/denitrification and partial nitritation/anammox principles require oxygen for the nitrification step, and are therefore still not yet fully satisfied with the application practice. In recent years, biological ammonium oxidation coupled with ferric iron reduction (feammox) has been proposed to be responsible for the nitrogen loss in different ecological habitats. Related to the wastewater aspect, the feammox principle has been discussed as an alternative approach for ammonium removal without dependency on oxygen. From a laboratory-scaled feammox bioreactor operated under neutral pH, two bacterial strains FN7 and FN9 were isolated by using the anaerobic Hungate technique. Comparative analyses of 16S rDNA sequences showed that these strains were most closely related to the b-proteobacterium Aciclyphilus denitrificans and the g-proteobacterium Pseudomonas stutzeri, respectively. Although being phylogenetically apart, strains FN7 and FN9 shared several common physiological characteristics that are considered meaningful for the feammox process, i.e. (i) heteroptrophic ammonium oxidation, (ii) denitrification, and (iii) ferric iron reduction. These isolates are proposed to play certain roles in the studied feammox system, contributing to the ammonium removal under heterotrophic feammox condition. The 16S rDNA sequences of strains FN7 and FN9 were available in GenBank under the accession numbers LC474369 and MT568614, respectively.

2018 ◽  
Vol 29 (5) ◽  
pp. 429-442 ◽  
Author(s):  
E. Emilia Rios-Del Toro ◽  
Edgardo I. Valenzuela ◽  
Nguyen E. López-Lozano ◽  
M. Guadalupe Cortés-Martínez ◽  
Miguel A. Sánchez-Rodríguez ◽  
...  

2015 ◽  
Vol 49 (19) ◽  
pp. 11560-11568 ◽  
Author(s):  
Xiaofei Li ◽  
Lijun Hou ◽  
Min Liu ◽  
Yanling Zheng ◽  
Guoyu Yin ◽  
...  

1999 ◽  
Vol 45 (3) ◽  
pp. 209-216 ◽  
Author(s):  
P Poupin ◽  
J J Godon ◽  
E Zumstein ◽  
N Truffaut

Nine bacterial strains that grew on morpholine and pyrrolidine as sole carbon, nitrogen, and energy sources were isolated from three different environments with no known morpholine contamination. One of these strains could also degrade piperidine. These bacteria were identified as Mycobacterium strains. A phylogenetic analysis based on the partial 16S rDNA sequences indicated that the isolated strains clustered within the fast growing group of mycobacteria. When the above-mentioned cyclic amines were used as growth substrates, the synthesis of a soluble cytochrome P450 was induced in all these bacteria. Other laboratory strains, Mycobacterium fortuitum and Mycobacterium smegmatis mc2155, were tested for their abilities to degrade morpholine. Neither of them degraded morpholine but could use pyrrolidine and piperidine. The growth of M. fortuitum and M. smegmatis mc2155 on these compounds involved a soluble cytochrome P450, suggesting that mycobacterial strains are naturally able to use pyrrolidine and have developed a similar enzymatic pathway to metabolize this amine.Key words: mycobacteria, morpholine, piperidine, pyrrolidine, cytochrome P450.


2019 ◽  
Vol 4 (1) ◽  
pp. 21-30 ◽  
Author(s):  
Alifia Issabella Mulyawati ◽  
Tri Ardyati ◽  
Yoga Dwi Jatmiko

  Bacteriocin-like inhibitory substances (BLIS) produced by bacteria is a promising future food preservative agent. This study aimed to obtain bacterial strains that can produce broad-spectrum antibacterial agents and identify the best BLIS producer species based on 16S rDNA sequences. The bacterial strains were isolated from fer-mented mare’s milk using MRS and M17 agar medium. The isolates then were initially screened based on its antibacterial activity of crude cells against Staphylococcus aureus ATCC 6538. The selected strains were cultured and harvested for its cell-free supernatant (CFS). The pH of CFS was adjusted to 6.5 then used for antibacterial activity as-says against ten pathogenic bacteria. Also, the proteinaceous nature of BLIS compound was confirmed by testing with proteinase K. The gDNA of selected isolates was extracted and the 16S rDNA was am-plified using the polymerase chain reaction method then sequenced. The 16S rDNA sequences of the selected strains were used to identify the species using BLAST nucleotides from NCBI then the phylogenetic trees were constructed. 32 isolates was obtained, but only three iso-lates (BC9, SB7, and DC12) were selected as a result of antibacterial screening for further assays. The neutralized-CFS (N-CFS) of these isolates exhibited broad-spectrum antibacterial activity. The N-CFS could be assumed as BLIS. The isolate of BC9 was identified as Ba-cillus amyloliquefaciens strain BC9 that has 99.99 % similarity with B. amyloliquefaciens KC-1, SB7 was Lactobacillus plantarum strain SB7 that has 99.99 % similarity with Lb. plantarum JMC 1149T, and DC12 was Lactobacillus rhamnosus strain DC12 that has 100 % sim-ilarity with Lb. rhamnosus DSM 20021T. Thus, the BLIS produced by those strains is potential for future food and beverages preservations. 


1999 ◽  
Vol 65 (7) ◽  
pp. 2813-2819 ◽  
Author(s):  
Kazuya Watanabe ◽  
Maki Teramoto ◽  
Shigeaki Harayama

ABSTRACT Activated sludge was fed phenol as the sole carbon source, and the phenol-loading rate was increased stepwise from 0.5 to 1.0 g liter−1 day−1 and then to 1.5 g liter−1 day−1. After the loading rate was increased to 1.5 g liter−1 day−1, nonflocculating bacteria outgrew the sludge, and the activated-sludge process broke down within 1 week. The bacterial population structure of the activated sludge was analyzed by temperature gradient gel electrophoresis (TGGE) of PCR-amplified 16S ribosomal DNA (rDNA) fragments. We found that the population diversity decreased as the phenol-loading rate increased and that two populations (designated populations R6 and R10) predominated in the sludge during the last several days before breakdown. The R6 population was present under the low-phenol-loading-rate conditions, while the R10 population was present only after the loading rate was increased to 1.5 g liter−1 day−1. A total of 41 bacterial strains with different repetitive extragenic palindromic sequence PCR patterns were isolated from the activated sludge under different phenol-loading conditions, and the 16S rDNA and gyrBfragments of these strains were PCR amplified and sequenced. Some bacterial isolates could be associated with major TGGE bands by comparing the 16S rDNA sequences. All of the bacterial strains affiliated with the R6 population had almost identical 16S rDNA sequences, while the gyrB phylogenetic analysis divided these strains into two physiologically divergent groups; both of these groups of strains could grow on phenol, while one group (designated the R6F group) flocculated in laboratory media and the other group (the R6T group) did not. A competitive PCR analysis in which specificgyrB sequences were used as the primers showed that a population shift from R6F to R6T occurred following the increase in the phenol-loading rate to 1.5 g liter−1day−1. The R10 population corresponded to nonflocculating phenol-degrading bacteria. Our results suggest that an outbreak of nonflocculating catabolic populations caused the breakdown of the activated-sludge process. This study also demonstrated the usefulness of gyrB-targeted fine population analyses in microbial ecology.


1993 ◽  
Vol 114 (2) ◽  
pp. 173-177 ◽  
Author(s):  
A. Ibrahim ◽  
B.M. Goebel ◽  
W. Liesack ◽  
M. Griffiths ◽  
E. Stackebrandt

2019 ◽  
Vol 4 (1) ◽  
pp. 79-88
Author(s):  
Evi Octaviany ◽  
Suharjono Suharjono ◽  
Irfan Mustafa

A commercial saponin as biosurfactant can reduce the surface tension of water and increase of hydrocarbon degradation. However, this saponin can be toxic to some hydrocarbonoclastic bac-teria. This study aimed to obtain bacterial isolates that were tolerant and incapable to degrade saponin, and to identify them based on 16S rDNA sequence. Bacteria were isolated from petroleum contaminated soil in Wonocolo Village, Bojonegoro Regency, East Java, Indonesia. The soil samples were acclimated using Bushnell-Haas (BH) broth with 0.5% crude oil at room temperature for 3 weeks. The culture was spread onto BH agar incubated at 30°C for 7 days. The first screened, isolates were grown in nutrient broth with addition of sap-onin 0%, 8%, and 12% (v/v) then incubated at 30°C for three days. The bacterial cell density was measured using a spectrophotometer. Second screened, the isolates were grown on BH broth with addition of 0.5% saponin as a sole carbon source, and their cell densities were measured. The selected isolates were identified based on 16S rDNA sequences. Among 34 bacterial isolates, nine isolates were tol-erant to 12% saponin. Three bacterial isolates IHT1.3, IHT1.5, and IHT3.24 tolerant to high concentration of saponin and did not use this substance as growth nutrition. The IHT1.3, IHT1.5, and IHT3.24 isolates were identified as Ochrobactrum pseudogrignonense (99% similarity), Pseudomonas mendocina (99%), and Ochrobactrum pi-tuitosum; (97%), respectively. Those three selected isolates are good candidates as hydrocarbon-degrading bacteria to bioremediation of soil contaminated crude oil. However, the combined activity of bacteria and saponin to degrade hydrocarbon needs further study. 


2014 ◽  
Vol 48 (18) ◽  
pp. 10641-10647 ◽  
Author(s):  
Long-Jun Ding ◽  
Xin-Li An ◽  
Shun Li ◽  
Gan-Lin Zhang ◽  
Yong-Guan Zhu

Sign in / Sign up

Export Citation Format

Share Document