scholarly journals On solving inverse kinematics of redundant robotic manipulators by using coordinate and velocity projection methods.

Author(s):  
Nguyễn Quang Hoàng ◽  
Thái Phương Thảo
Author(s):  
Tuna Balkan ◽  
M. Kemal Özgören ◽  
M. A. Sahir Arikan ◽  
H. Murat Baykurt

Abstract A semi-analytical method and a computer program are developed for inverse kinematics solution of a class of robotic manipulators, in which four joint variables are contained in wrist point equations. For this case, it becomes possible to express all the joint variables in terms of a joint variable, and this reduces the inverse kinematics problem to solving a nonlinear equation in terms of that joint variable. The solution can be obtained by iterative methods and the remaining joint variables can easily be computed by using the solved joint variable. Since the method is manipulator dependent, the equations will be different for kinematically different classes of manipulators, and should be derived analytically. A significant benefit of the method is that, the singular configurations and the multiple solutions indicated by sign ambiguities can be determined while deriving the inverse kinematic expressions. The developed method is applied to a six-revolute-joint industrial robot, FANUC Arc Mate Sr.


Author(s):  
Deanne C. Kemeny ◽  
Raymond J. Cipra

Discretely-actuated manipulators are defined in this paper as serial planar chains of many links and are an alternative to traditional robotic manipulators, where continuously variable actuators are replaced with discrete, or digital actuators. Benefits include reduced weight and complexity, and predictable manipulation at lower cost. Challenges to using digital manipulators are the discrete end-effector positions which make the inverse kinematics problem difficult to solve. Furthermore, for a specific application position in the manipulator workspace, there may not be an actual end-effector position. This research has relaxed the inverse kinematics problem around this challenge making each application position an element of a grid in which the end effector must reach. There may be many possible end-effector positions that would reach the element goal, the solution uses the first one that is found. The inverse kinematics solution assumes the assembly configuration of the digital manipulator is already solved specifically for the application grid. The Jacobian function, normally used to solve joint velocities, can be used to identify the exact shift vectors that are used for the inverse kinematics. Three methods to solve this problem are discussed and the third method was implemented as a four-part solution that is a directed and manipulated search for the inverse kinematics solution where all four solutions may be needed. A discussion of forward kinematics and the Jacobian function in relation to digital manipulators is also presented.


Author(s):  
William McMahan ◽  
Bryan Jones ◽  
Ian Walker ◽  
Vilas Chitrakaran ◽  
Arjun Seshadri ◽  
...  

This paper connects the investigation of the biomechanics and behavior of octopus in the performance of a wide range of dexterous manipulations to the creation of octopus arm-like robots. This is achieved via the development of a series of octopus arm models which aid in both explaining the underlying octopus biomechanics and in developing a specification for the design of robotic manipulators. Robotic manipulators which match the key features of these models are then introduced, followed by the development of inverse kinematics for the circular (constant) curvature model.


2012 ◽  
Vol 4 (2) ◽  
Author(s):  
Joanna Karpińska ◽  
Krzysztof Tchoń

For redundant robotic manipulators, we study the design problem of Jacobian inverse kinematics algorithms of desired performance. A specific instance of the problem is addressed, namely the optimal approximation of the Jacobian pseudo-inverse algorithm by the extended Jacobian algorithm. The approximation error functional is derived for the coordinate-free representation of the manipulator’s kinematics. A variational formulation of the problem is employed, and the approximation error is minimized by means of the Ritz method. The optimal extended Jacobian algorithm is designed for the 7 degrees of freedom (dof) POLYCRANK manipulator. It is concluded that the coordinate-free kinematics representation results in more accurate approximation than the coordinate expression of the kinematics.


1987 ◽  
Vol 109 (1) ◽  
pp. 8-13 ◽  
Author(s):  
Kazem Kazerounian

Based on the sequential motion of joints, a method is developed for the numerical inverse kinematics of serial manipulators. This algorithm is stable and computationally efficient and uses the zero position analysis method for robotic manipulators.


Robotica ◽  
2005 ◽  
Vol 23 (1) ◽  
pp. 123-129 ◽  
Author(s):  
John Q. Gan ◽  
Eimei Oyama ◽  
Eric M. Rosales ◽  
Huosheng Hu

For robotic manipulators that are redundant or with high degrees of freedom (dof), an analytical solution to the inverse kinematics is very difficult or impossible. Pioneer 2 robotic arm (P2Arm) is a recently developed and widely used 5-dof manipulator. There is no effective solution to its inverse kinematics to date. This paper presents a first complete analytical solution to the inverse kinematics of the P2Arm, which makes it possible to control the arm to any reachable position in an unstructured environment. The strategies developed in this paper could also be useful for solving the inverse kinematics problem of other types of robotic arms.


Sign in / Sign up

Export Citation Format

Share Document