joint variable
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 7)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jie Cai ◽  
Jinlian Deng ◽  
Wei Zhang ◽  
Weisheng Zhao

With the continuous development of science and technology, robotics is widely used in various fields. In recent years, more and more research studies have been done on the control of autonomous robotic manipulators. How to quickly, accurately, and smoothly grasp objects has always been a difficult point of research. As the robot’s executive mechanism, the robot arm plays an important role in whether the robot can complete a specific task. Therefore, the research on the robot arm is also the main topic in the development of robot technology. The control theory, kinematics, and human-computer interaction of robotic arms are the focus of the research in the field of robotic arms. Based on the above background, the research content of this paper is the research on the modeling method of autonomous robotic manipulator based on D-H algorithm. This paper uses D-H modeling method to model a four-degree-of-freedom robotic arm and gives the forward kinematics equation of the robotic arm. The inverse solution of the manipulator was given by the method and the geometric method, and the joint variable values were calculated. Finally, through experimental simulation, the experimental results show that the inverse solution of the end position of the machine by the geometric method is in the range of 2∼4 mm, and the inverse solution of the end position of the machine by the algebraic method is in the range of 6∼14 mm. It is more accurate to find the inverse solution of the geometrical method of the manipulator than the algebraic method.


Author(s):  
Bien Duong Xuan

Modern design always aims at reducing mass, simplifying the structure, and reducing the energy consumption of the system especially in robotics. These targets could lead to lowing cost of the material and increasing the operating capacity. The priority direction in robot design is optimal structures with longer lengths of the links, smaller and thinner links, more economical still warranting ability to work. However, all of these structures such as flexible robots are reducing rigidity and motion accuracy because of the effect of elastic deformations. Therefore, taking the effects of elastic factor into consideration is absolutely necessary for kinematic, dynamic modeling, analyzing, and controlling flexible robots. Because of the complexity of modeling and controlling flexible robots, the single-link and two-link flexible robots with only rotational joints are mainly mentioned and studied by most researchers. It is easy to realize that combining the different types of joints of flexible robots can extend their applications, flexibility, and types of structure. However, the models consisting of rotational and translational joints will make the kinematic, dynamic modeling, and control becomes more complex than models that have only rotational joints. This study focuses on the dynamics model and optimal controller based on genetic algorithms (GA) for a single flexible link robot (FLR) with a rigid translational joint. The motion equations of the FLR are built based on the Finite Element Method (FEM) and Lagrange Equations (LE). The difference between flexible manipulators that have only rotational joints and others with the translational joint is presented through boundary conditions. A PID controller is designed with parameters that are optimized by the GA algorithm. The cost function is established based on errors signal of translational joint, elastic displacements of the End-Point (EP) of the FLR. Simulation results show that the errors of the joint variable, the elastic displacements (ED) are destructed in a short time when the system is controlled following the reference point. The results of this study can be basic to research other flexible robots with more joint or combine joint styles.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Aravind Baskar ◽  
Mark Plecnik

Abstract Synthesis of rigid-body mechanisms has traditionally been motivated by the design for kinematic requirements such as rigid-body motions, paths, or functions. A blend of the latter two leads to timed curve synthesis, the goal of which is to produce a path coordinated to the input of a joint variable. This approach has utility for altering the transmission of forces and velocities from an input joint onto an output point path. The design of timed curve generators can be accomplished by setting up a square system of algebraic equations and obtaining all isolated solutions. For a four-bar linkage, obtaining these solutions is routine. The situation becomes much more complicated for the six-bar linkages, but the range of possible output motions is more diverse. The computation of nearly complete solution sets for these six-bar design equations has been facilitated by recent root finding techniques belonging to the field of numerical algebraic geometry. In particular, we implement a method that uses random monodromy loops. In this work, we report these solution sets to all relevant six-bars of the Stephenson topology. The computed solution sets to these generic problems represent a design library, which can be used in a parameter continuation step to design linkages for different subsequent requirements.


Author(s):  
Se Yoon Lee ◽  
Bowen Lei ◽  
Bani K. Mallick

AbstractCurrently, novel coronavirus disease 2019 (COVID-19) is a big threat to global health. The rapid spread of the virus has created pandemic, and countries all over the world are struggling with a surge in COVID-19 infected cases. Scientists are working on estimating or predicting infection trajectory for the COVID-19 confirmed cases, which will be useful for future planning and policymaking to effectively cope with the disease. There are no drugs or other therapeutics approved by the US Food and Drug Administration to prevent or treat COVID-19: information on the disease is very limited and scattered even if it exists. This motivates the use of data integration, combining data from diverse sources and eliciting useful information with a unified view of them. In this paper, we propose a Bayesian hierarchical model that integrates global data to estimate COVID-19 infection trajectories. Due to information borrowing across multiple countries, the proposed growth curve models provide a powerful predictive tool endowed with uncertainty quantification. They outperform the existing individual country-based models. Additionally, we use countrywide covariates to adjust infection trajectories. A joint variable selection technique has been integrated into the proposed modeling scheme, which aimed to identify the possible country-level risk factors for severe disease due to COVID-19.


Author(s):  
Xuan Cao ◽  
Lili Ding ◽  
Tesfaye B. Mersha

AbstractIn this study, we conduct a comparison of three most recent statistical methods for joint variable selection and covariance estimation with application of detecting expression quantitative trait loci (eQTL) and gene network estimation, and introduce a new hierarchical Bayesian method to be included in the comparison. Unlike the traditional univariate regression approach in eQTL, all four methods correlate phenotypes and genotypes by multivariate regression models that incorporate the dependence information among phenotypes, and use Bayesian multiplicity adjustment to avoid multiple testing burdens raised by traditional multiple testing correction methods. We presented the performance of three methods (MSSL – Multivariate Spike and Slab Lasso, SSUR – Sparse Seemingly Unrelated Bayesian Regression, and OBFBF – Objective Bayes Fractional Bayes Factor), along with the proposed, JDAG (Joint estimation via a Gaussian Directed Acyclic Graph model) method through simulation experiments, and publicly available HapMap real data, taking asthma as an example. Compared with existing methods, JDAG identified networks with higher sensitivity and specificity under row-wise sparse settings. JDAG requires less execution in small-to-moderate dimensions, but is not currently applicable to high dimensional data. The eQTL analysis in asthma data showed a number of known gene regulations such as STARD3, IKZF3 and PGAP3, all reported in asthma studies. The code of the proposed method is freely available at GitHub (https://github.com/xuan-cao/Joint-estimation-for-eQTL).


Robotics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 29 ◽  
Author(s):  
Sebastián Arévalo ◽  
Laribi ◽  
Zeghloul ◽  
Arsicault

Variable stiffness actuators are employed to improve the safety features of robots that share a common workspace with humans. In this paper, a study of a joint variable stiffness device developed by PPRIME Institute—called V2SOM— for implementation in the joints of a multi-DoF robot is presented. A comparison of the interaction forces produced by a rigid body robot and a flexible robot using the V2SOM is provided through a dynamic simulator of a 7-DoF robot. As an example of potential applications, robot-assisted Doppler echography is proposed, which mainly focuses on guaranteeing patient safety when the robot holding the ultrasound probe comes into contact with the patient. For this purpose, an evaluation of both joint and Cartesian control approaches is provided. The simulation results allow us to corroborate the effectiveness of the V2SOM device to guarantee human safety when it is implemented in a multi-DoF robot.


2018 ◽  
Vol 9 (2) ◽  
pp. 277-296 ◽  
Author(s):  
Izzat Al-Darraji ◽  
Ali Kılıç ◽  
Sadettin Kapucu

Abstract. This work presents a detailed design of a three-jointed tendon-driven robot finger with a cam/pulleys transmission and joint Variable Stiffness Actuator (VSA). The finger motion configuration is obtained by deriving the cam/pulleys transmission profile as a mathematical solution that is then implemented to achieve contact force isotropy on the phalanges. A VSA is proposed, in which three VSAs are designed to act as a muscle in joint space to provide firm grasping. As a mechatronic approach, a suitable type and number of force sensors and actuators are designed to sense the touch, actuate the finger, and tune the VSAs. The torque of the VSAs is controlled utilizing a designed Multi Input Multi Output (MIMO) fuzzy controller. The fuzzy controller input is the force sensors' signals that are used to set the appropriate VSA torque. The fuzzy controller parameters are then tuned using a genetic algorithm as an optimization technique. The objective function of the genetic algorithm is to avoid unbalance torque in the individual joints and to reduce the difference between the values of the supplied VSAs torques. Finally, the operation of the aforementioned finger system is organized through a simple control algorithm. The function of this algorithm is to enable the detection of the unknown object and simultaneously automatically activate the optimized fuzzy controller thus eliminating the necessity of any external control unit.


Sign in / Sign up

Export Citation Format

Share Document