scholarly journals Mitigation of Voltage Sags/Swells to Enhance Power Quality of Distribution System Using a Custom Power Device (DVR)

Author(s):  
TRIPTI SHAHI ◽  
◽  
K.P. SINGH
Author(s):  
Lakshmi Lakshmi Kumari ◽  
Uma Vani Uma Vani

<p>This paper presents the application of dynamic voltage restorers (DVR) on power distribution Systems for mitigation of voltage sags/swells at critical loads. DVR is one of the compensating types of custom power devices. The power quality is affected mainly due to the sensitive loads which results in voltage sag and voltage swells. It is necessary to investigate the suitable methods for mitigation of voltage sags. Sensitivity is the main cause of the above power quality problems and it cannot be eliminated completely as it has many other operating properties. So the next possible solution is to correct the problems caused by the sensitive equipments connected to the faulty loads. The occurrence of sag and swell varies with equipment, environment, process operations, desired control schemes etc. From the wide range of mitigation methods, the selected one has to be observed for the effect on the characteristics. These problems can be mitigated with voltage injection method using custom power device, Dynamic Voltage Restorer (DVR). In this paper we design a Dynamic Voltage Restorer (DVR) which is utilized for power quality improvement. The main power quality problems like voltage sag and swell are studied in this paper. The device used to phase out voltage sags and a swell in the distribution lines is the Dynamic Voltage Restorer (DVR). The Dynamic Voltage Restorer is a special type of power device used for providing consistent and reliable supply power to the load devices. Dynamic Voltage Restorer uses a vector control strategy for mitigating power quality problems by automatically detecting and injecting the voltage components through an injection transformer. Here comes the importance of soft computing techniques like PI controller. The system will be able to correct repeated occurrences of the power quality problems. </p>


2019 ◽  
Vol 891 ◽  
pp. 239-245
Author(s):  
Nattachote Rugthaicharoencheep

Power quality (PQ) has become a more important issue recently due to the use of more sophisticated and sensitive equipment. Medical devices, telecommunication servers and equipment, manufacturing and domestic appliances rely on a good supply of power. This paper presents the review of the power quality in power system. Power quality has always been important for customers, but with increasing applications of electronic loads and controllers sensitive to the power quality, the subject has attracted renewed interest in recent times. Power quality encompasses several aspects: harmonics, over voltage, flicker voltage sags and swells interruptions etc. A major factor contributing to the importance of the quality of power is the deregulation of the power industry. Customers will demand higher levels of power quality to ensure the proper and continued operation of sensitive equipment and processes.


2019 ◽  
Vol 15 (2) ◽  
pp. 50-60
Author(s):  
Abdul-Jabbar Ali ◽  
Wael Zayer ◽  
Samhar Shukir

The power quality problems can be defined as the difference between the quality of power supplied and the quality of power required. Recently a large interest has been focused on a power quality domain due to: disturbances caused by non-linear loads and Increase in number of electronic devices. Power quality measures the fitness of the electric power transmitted from generation to industrial, domestic and commercial consumers. At least 50% of power quality problems are of voltage quality type. Voltage sag is the serious power quality issues for the electric power industry and leads to the damage of sensitive equipments like, computers, programmable logic controller (PLC), adjustable speed drives (ADS). The prime goal of this paper is to investigate the performance of the Fuzzy Logic controller based DVR in reduction the power disturbances to restore the load voltage to the nominal value and reduce the THD to a permissible value which is 5% for the system less than 69Kv. The modeling and simulation of a power distribution system have been achieved using MATLABL/Simulink. Different faults conditions and power disturbances with linear and non-linear loads are created with the proposed system, which are initiated at a duration of 0.8 sec and kept till 0.95 sec.


The impact of wind technology on power quality for a distribution system is emphasized in this paper. The Power Quality of a Distribution system depends on voltage and Frequency quality. The pros of integrating the wind turbine to the system are loss reduction and voltage profile improvement but the cons of adding renewable energy to the distribution system are represented in this paper. such as voltage unbalance, flicker, power factor, and the impact of voltage and current harmonics are measured. The performed analysis results indicated the importance of the integration of DG based on Power quality Parameters.


Author(s):  
P Ankineedu Prasad A Ayyappa Swamy and

The major concern in a growing power quality is harmonics distortion which is caused by the non-linear nature of the loads. This problem has drawn much attention from utilities, users and industries. To reduce the harmonic distortion for improving the power quality of the system a custom power devices has been proposed. A static compensator (STATCOM) is implemented at distribution level for overcoming several power quality problems. In this paper, new control technic i.e AI is proposed on shunt compensator to estimates the weight values of load currents. The control approach is based on the convergence of the load currents and property of the input signal. A working prototype of the STATCOM is implemented using three-phase VSC and AI control technique based PWM controller approach is developed in MATLAB/SIMULINK.


Author(s):  
D.R. PATIL ◽  
KOMAL K. MADHALE

This paper presents the design of a prototype distribution static compensator (DSTATCOM) for voltage sag mitigation in an unbalanced distribution system. The D-STATCOM is intended to replace the widely used static Var compensator (SVC). The model is based on the Voltage Source Converter (VSC) principle. A new PWM based control scheme has been implemented to control the electronic valves in two level of VSC. The D-STATCOM injects a current into the system to mitigate the voltage sags. In this work, the 6-pulse D-STATCOM configuration with IGBT has been designed using MATLAB SIMULINK. Accordingly, simulations are first carried out to illustrate the use of D-STATCOM in mitigating voltage sag in a distribution system. Simulation results prove that the D-STATCOM is capable of mitigating voltage sag as well as improving power quality of a system.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 2452-2458

This paper presents the cascade multilevel UPQC for sag and swell mitigation of a grid connected hybrid system. Power quality is the major problem facing by today’s power system. Due to the use of power electronic converters and devices the harmonics are injected into the grid that may result in grid failure. To mitigate these harmonics custom power devices are used. UPQC is the custom power devise that is used in this paper. The seven level cascade multilevel converter is used for both the series and shunt inverters of UPQC for better harmonic distortion. This system is connected to the PV+WIND hybrid system to provide effective utilization of the resources. The UPQC contains a DC link which controls the Sag and Swell, LG Fault and improves the power quality of the system. This system is simulated in MATLAB/SIMULINK


Sign in / Sign up

Export Citation Format

Share Document