scholarly journals Vine Copula Graphical Models in the Construction of Biological Networks

Author(s):  
Hajar FARNOUDKİA ◽  
Vilda PURUTCUOGLU
2000 ◽  
Vol 4 (2) ◽  
pp. 109-126 ◽  
Author(s):  
E. J. Moler ◽  
M. L. Chow ◽  
I. S. Mian

A modular framework is proposed for modeling and understanding the relationships between molecular profile data and other domain knowledge using a combination of generative (here, graphical models) and discriminative [Support Vector Machines (SVMs)] methods. As illustration, naive Bayes models, simple graphical models, and SVMs were applied to published transcription profile data for 1,988 genes in 62 colon adenocarcinoma tissue specimens labeled as tumor or nontumor. These unsupervised and supervised learning methods identified three classes or subtypes of specimens, assigned tumor or nontumor labels to new specimens and detected six potentially mislabeled specimens. The probability parameters of the three classes were utilized to develop a novel gene relevance, ranking, and selection method. SVMs trained to discriminate nontumor from tumor specimens using only the 50–200 top-ranked genes had the same or better generalization performance than the full repertoire of 1,988 genes. Approximately 90 marker genes were pinpointed for use in understanding the basic biology of colon adenocarcinoma, defining targets for therapeutic intervention and developing diagnostic tools. These potential markers highlight the importance of tissue biology in the etiology of cancer. Comparative analysis of molecular profile data is proposed as a mechanism for predicting the physiological function of genes in instances when comparative sequence analysis proves uninformative, such as with human and yeast translationally controlled tumour protein. Graphical models and SVMs hold promise as the foundations for developing decision support systems for diagnosis, prognosis, and monitoring as well as inferring biological networks.


2020 ◽  
Author(s):  
Camilla Lingjærde ◽  
Tonje G Lien ◽  
Ørnulf Borgan ◽  
Ingrid K Glad

AbstractBackgroundIdentifying gene interactions is a topic of great importance in genomics, and approaches based on network models provide a powerful tool for studying these. Assuming a Gaussian graphical model, a gene association network may be estimated from multiomic data based on the non-zero entries of the inverse covariance matrix. Inferring such biological networks is challenging because of the high dimensionality of the problem, making traditional estimators unsuitable. The graphical lasso is constructed for the estimation of sparse inverse covariance matrices in Gaussian graphical models in such situations, using L1-penalization on the matrix entries. An extension of the graphical lasso is the weighted graphical lasso, in which prior biological information from other (data) sources is integrated into the model through the weights. There are however issues with this approach, as it naïvely forces the prior information into the network estimation, even if it is misleading or does not agree with the data at hand. Further, if an associated network based on other data is used as the prior, weighted graphical lasso often fails to utilize the information effectively.ResultsWe propose a novel graphical lasso approach, the tailored graphical lasso, that aims to handle prior information of unknown accuracy more effectively. We provide an R package implementing the method, tailoredGlasso. Applying the method to both simulated and real multiomic data sets, we find that it outperforms the unweighted and weighted graphical lasso in terms of all performance measures we consider. In fact, the graphical lasso and weighted graphical lasso can be considered special cases of the tailored graphical lasso, and a parameter determined by the data measures the usefulness of the prior information. With our method, mRNA data are demonstrated to provide highly useful prior information for protein-protein interaction networks.ConclusionsThe method we introduce utilizes useful prior information more effectively without involving any risk of loss of accuracy should the prior information be misleading.


2019 ◽  
Author(s):  
Julian Burger ◽  
Margaret S. Stroebe ◽  
Pasqualina Perrig-Chiello ◽  
Henk A.W. Schut ◽  
Stefanie Spahni ◽  
...  

Background: Prior network analyses demonstrated that the death of a loved one potentially precedes specific depression symptoms, primarily loneliness, which in turn links to other depressive symptoms. In this study, we extend prior research by comparing depression symptom network structures following two types of marital disruption: bereavement versus separation. Methods: We fitted two Gaussian Graphical Models to cross-sectional data from a Swiss survey of older persons (145 bereaved, 217 separated, and 362 married controls), and compared symptom levels across bereaved and separated individuals. Results: Separated compared to widowed individuals were more likely to perceive an unfriendly environment and oneself as a failure. Both types of marital disruption were linked primarily to loneliness, from where different relations emerged to other depressive symptoms. Amongst others, loneliness had a stronger connection to perceiving oneself as a failure in separated compared to widowed individuals. Conversely, loneliness had a stronger connection to getting going in widowed individuals. Limitations: Analyses are based on cross-sectional between-subjects data, and conclusions regarding dynamic processes on the within-subjects level remain putative. Further, some of the estimated parameters in the network exhibited overlapping confidence intervals and their order needs to be interpreted with care. Replications should thus aim for studies with multiple time points and larger samples. Conclusions: The findings of this study add to a growing body of literature indicating that depressive symptom patterns depend on contextual factors. If replicated on the within-subjects level, such findings have implications for setting up patient-tailored treatment approaches in dependence of contextual factors.


Sign in / Sign up

Export Citation Format

Share Document