scholarly journals Analysis of Effects on Soil Erosion Reduction of Various Best Management Practices at Watershed Scale

2014 ◽  
Vol 30 (6) ◽  
pp. 638-646 ◽  
Author(s):  
Dong Jun Lee ◽  
Ji Min Lee ◽  
Donghyuk Kum ◽  
Youn Shik Park ◽  
Younghun Jung ◽  
...  
Author(s):  
Félicien Majoro ◽  
Umaru Garba Wali ◽  
Omar Munyaneza ◽  
François-Xavier Naramabuye ◽  
Concilie Mukamwambali

Soil erosion is an environmental concern that affects agriculture, wildlife and water bodies. Soil erosion can be avoided by maintaining a protective cover on the soil to create a barrier to the erosive agent or by modifying the landscape to control runoff amounts and rates. This research is focused on Sebeya catchment located in the Western Province of Rwanda. Sebeya catchment is one of the most affected areas by soil erosion hazards causing loss of crops due to the destruction of agricultural plots or riverbanks, river sedimentation and damages to the existing water treatment and hydropower plants in the downstream part of the river. The aims of this research were to assess the performance of erosion remediation measures and to propose the Best Management Practices (BMPs) for erosion control in Sebeya catchment. Using literature review, site visits, questionnaire and interviews, various erosion control measures were analyzed in terms of performance and suitability. Land slope and soil depth maps were generated using ArcGIS software. The interview results indicated that among the 22 existing soil erosion control measures, about 4.57% of farmers confirmed their existence while 95.43% expressed the need of their implementation in Sebeya catchment. Furthermore, economic constraints were found to be the main limitative factors against the implementation of soil erosion control measures in Sebeya catchment. Also, the majority of farmers suggest trainings and mobilization of a specialized technical team to assist them in implementing soil conservation measures and to generalize the application of fertilizers in the whole catchment. Finally, soil erosion control measures including agro-forestry, terraces, mulching, tree planting, contour bunds, vegetative measures for slopes and buffer zones, check dams, riverbanks stabilization were proposed and recommended to be implemented in Sebeya catchment. Keywords: Erosion control measures, Sebeya catchment, Rwanda


2006 ◽  
Vol 41 (3) ◽  
pp. 283-295 ◽  
Author(s):  
Renaud Quilbé ◽  
Alain N. Rousseau ◽  
Pierre Lafrance ◽  
Jacinthe Leclerc ◽  
Mohamed Amrani

Abstract Numerous models have been developed over the last decades to simulate the fate of pesticides at the watershed scale. Based on a literature review, we inventoried thirty-six models categorized as management, research, screening or multimedia models, each of them having specific strengths and weaknesses. Given this large number of models, it may be difficult for potential users (stakeholders or scientists) to find the most suited one with respect to their needs. To help in this process, this paper proposes a pragmatic approach based on a multi-criteria analysis. Selection criteria are defined following the user's needs and classified in five classes: modelling characteristics, output variables, model applicability, possibilities to simulate best management practices (BMPs) and ease of use. The relative importance of each criterion is quantified by a weight and the total score of a model is calculated by adding the resulting weights of satisfied criteria. This selection framework is illustrated with a case study that consists in selecting a model to develop water quality standards at the watershed scale with respect to the implementation of BMPs. This resulted in the selection of three models: BASINS, SWAT and GIBSI.


2009 ◽  
Vol 90 (3) ◽  
pp. 1385-1395 ◽  
Author(s):  
Nalini S. Rao ◽  
Zachary M. Easton ◽  
Elliot M. Schneiderman ◽  
Mark S. Zion ◽  
David R. Lee ◽  
...  

2017 ◽  
Vol 32 (1) ◽  
pp. 155-177 ◽  
Author(s):  
Hui Wu ◽  
A-Xing Zhu ◽  
Junzhi Liu ◽  
Yongbo Liu ◽  
Jingchao Jiang

2020 ◽  
Vol 13 (1) ◽  
pp. 232
Author(s):  
Susanta Das ◽  
Proloy Deb ◽  
Pradip Kumar Bora ◽  
Prafull Katre

Soil erosion from arable lands removes the top fertile soil layer (comprised of humus/organic matter) and therefore requires fertilizer application which affects the overall sustainability. Hence, determination of soil erosion from arable lands is crucial to planning conservation measures. A modeling approach is a suitable alternative to estimate soil loss in ungauged catchments. Soil erosion primarily depends on soil texture, structure, infiltration, topography, land uses, and other erosive forces like water and wind. By analyzing these parameters, coupled with geospatial tools, models can estimate storm wise and annual average soil losses. In this study, a hilly watershed called Nongpoh was considered with the objective of prioritizing critical erosion hazard areas within the micro-catchment based on average annual soil loss and land use and land cover and making appropriate management plans for the prioritized areas. Two soil erosion models namely Revised Universal Soil Loss Equation (RUSLE) and Modified Morgan–Morgan–Finney (MMF) models were used to estimate soil loss with the input parameters extracted from satellite information and automatic weather stations. The RUSLE and MMF models showed similar results in estimating soil loss, except the MMF model estimated 7.74% less soil loss than the RUSLE model from the watershed. The results also indicated that the study area is under severe erosion class, whereas agricultural land, open forest area, and scrubland were prioritized most erosion prone areas within the watershed. Based on prioritization, best management plans were developed at catchment scale for reducing soil loss. These findings and the methodology employed can be widely used in mountainous to hilly watersheds around the world for identifying best management practices (BMP).


Sign in / Sign up

Export Citation Format

Share Document