Seasonal Comparison of Catch Rates and Size Structure Using Three Gear Types to Sample Sturgeon in the Middle Mississippi River

2009 ◽  
Vol 29 (5) ◽  
pp. 1487-1495 ◽  
Author(s):  
Quinton E. Phelps ◽  
David P. Herzog ◽  
Ronald C. Brooks ◽  
Valerie A. Barko ◽  
David E. Ostendorf ◽  
...  

<em>Abstract</em>.—Channel catfish <em>Ictalurus punctatus</em> are a major recreational and commercially important large river species. However, anthropogenic activities have heavily degraded the majority of riverine catfish habitats. To maintain catfish populations, an understanding of channel catfish early-life habitat use is necessary. We quantified habitat use of juvenile channel catfish in the middle Mississippi River from 2004 through 2007 by trawling in main channel, channel border, island, and artificial structure habitat (i.e., river training structures or wing dikes) features throughout the sampling reach (<EM>N</EM> = 878 trawls; <EM>N</EM> = 538 juvenile channel catfish). Channel catfish occurred most frequently in island and off-channel habitats. Few juvenile channel catfish were trawled in the main channel. All macrohabitat features were used by a broad size range of juvenile channel catfish, with the exception of the main channel, where only larger juvenile channel catfish were captured. Within each habitat, juvenile channel catfish catch rates were highest in sand substrate, low velocity, and shallow depths. Channel catfish in the middle Mississippi River use a variety of habitats during early life. Maintaining existing habitats, creating habitats with these attributes, and coupling this with proper management will foster sustainability of the channel catfish population at current commercial and recreational fishing levels in the middle Mississippi River.


10.3133/tm6c1 ◽  
2005 ◽  
Author(s):  
Jason J. Rohweder ◽  
Steven J. Zigler ◽  
Timothy J. Fox ◽  
Steven N. Hulse

<em>Abstract</em>.—Using Long Term Resource Monitoring Program data collected from impounded (Pool 26) and unimpounded (Open River) reaches of the upper Mississippi River, we investigated population dynamics of flathead catfish <em>Pylodictis olivaris</em>, channel catfish <em>Ictalurus punctatus</em>, and blue catfish <em>I. furcatus</em> from random sites located in side channel border (SCB) and main channel border (MCB) habitats. Objectives were to (1) compare trends (1993–2007) of three catfishes collected in Pool 26 and Open River reaches of the upper Mississippi River, and (2) provide needed information to managers on population dynamics through time using a binary gear approach of active (i.e., daytime electrofishing) and passive gears (hoopnetting). Active gears resulted in a higher catch per unit effort (CPUE) of all catfishes in each habitat–reach combination as compared to passive gears. Passive gears resulted in negligible catches of blue catfish and flathead catfishes (e.g., mean of <1 fish/net night). Catch per unit effort using active gear resulted in a greater number of channel catfish captured in Pool 26 compared to the Open River, with Open River SCB habitat having the lowest CPUE in most years. Blue catfish in the Open River had a higher CPUE using active gear as compared to Pool 26, with the Open River MCB having the greatest CPUE. Flathead catfish had a higher CPUE in MCB habitat compared to SCB habitat, with the Open River MCB having the highest CPUE in most years. However, declining trends in flathead catfish appears to be occurring in Open River habitats while trends in flathead catfish appear to be slightly increasing in Pool 26. The most common length-classes captured were substock and stock-sized fish regardless of habitat, species, or reach. Trends for channel catfish were easily determined due to high catch rates; however, more monitoring and enhanced sampling is needed to accurately assess flathead catfish and blue catfish trends and to accurately determine demographics for all three species.


<em>Abstract</em>.—Ecosystem restoration of the Mississippi River main stem has been ongoing since the early 1970s. After the passage of environmental laws in the late 1960s to the early 1970s, private citizens and state and federal natural resource agency managers began to seek programs and funding for restoration and conservation that eventually resulted in mitigation measures of adverse impacts. Environmental-type actions that include the Great River Environmental Action Team, the Avoid and Minimize program, the middle Mississippi River biological opinion, and the lower Mississippi River conservation plan and biological opinion originated from laws or legal action. The Upper Mississippi River Restoration, Navigation and Ecosystem Sustainability Program, Restoring America’s Greatest River, and Operation and Maintenance activities, which support system ecological restoration measures, are, to a large extent, done in a cooperative setting to improve the river for multiple benefits. This coalition of agencies and professions has resulted in the application of hundreds of different types of measures to restore form and function to the third largest river in the world. Over the years, dredging and disposal practices have improved in an effort to minimize the impacts from these activities. Lost floodplain islands have been replaced, backwater lakes and channel depths have been recovered, active river flow has been reintroduced to backwaters, and microhabitats for special concern species have been restored, all to recreate broad functional floodplain habitat. Wing-dike and side-channel closure structures have been shortened, notched, or removed to recover flow along the main-channel border and side channels, increasing hydraulic residence time and recovering valuable habitat along with restoring nutrient and sediment assimilation processes the floodplain provides. Field monitoring has shown positive responses from endangered and threatened species, migratory and resident aquatic and wildlife species, abiotic conditions like water quality, and increased use by humans enjoying the benefit of a restored river system. Collectively, this work is some of the most extensive large river restoration in the world, but it only represents a small contribution to what is necessary to maintain a diverse and resilient Mississippi River. The information provided in this chapter provides a basis for continuing restoration efforts that should become a routine part of Mississippi River management.


<em>Abstract</em>.— Long-term research indicates a significant and ongoing decline within the upper St. Lawrence River Muskellunge <em>Esox masquinongy </em>population. Index surveys show a sharp reduction in catch of both spawning adults and age-0 Muskellunge, and catch rates by anglers have similarly declined while harvest remains low. Other changes associated with population decline include presence of fewer female adult Muskellunge and a change in adult Muskellunge size structure (increase in proportion of fish <1,016 mm) in addition to more large individuals greater than 1,372 mm. A significant adult die-off occurred from 2005 to 2008 (103 adults recovered in U.S. and Canadian waters) concomitant with an outbreak of viral hemorrhagic septicemia (VHS). These population changes were also temporally correlated with detection and proliferation of invasive Round Goby <em>Neogobius melanostomus</em>, a known VHS virus (VHSV) reservoir, egg predator, and competitor with native fishes. Comparisons of index netting before and after VHSV and Round Goby invasions suggest a direct link to the decline, but because these are correlations, we can only explore these effects. To examine the viability of Muskellunge nursery sites, we repeated survival studies conducted in the early 1990s with experimental releases of advanced fry at four locations during 2013–2015. Findings indicate contribution to age-0 populations, but catches poststocking (wild and stocked) were lower compared to the 1990s. We review information regarding potential stressors, including VHSV and Round Goby invasion, and conclude that their combined effects have created significant uncertainty and challenges to sustainable management of the Muskellunge population. In response, the St. Lawrence River Muskellunge management plan should be updated with a focus on restoration of the declining Muskellunge stock. Recommended actions target advancing conservation and restoration of critical habitat, restoring lost subpopulations, and reducing mortality associated with angling (e.g., from handling and harvest).


2015 ◽  
Vol 7 (1) ◽  
pp. 222-230 ◽  
Author(s):  
Tyrel S. Moos ◽  
Brian G. Blackwell

Abstract In fisheries management, fish populations are assessed using various net types that invariably also capture nontarget species. Although the bycatch of turtles tends to be a common occurrence, data describing the bycatch of turtles during freshwater fish sampling are lacking. To improve the available knowledge base concerning the bycatch of turtles during fish sampling, we characterize the dynamics of western painted turtle Chrysemys picta bellii bycatch in unbaited modified fyke nets used in fish population sampling in northeastern South Dakota. We collected data from June to September during fish population assessments in 39 lakes and nine impoundments between 2007 and 2012. We characterize western painted turtle bycatch relating to water type (lake and impoundment) including catch rates (number of turtles/net night), size structure, and sex ratio. Catch rates were higher in impoundments than lakes. Total mean annual catch rates ranged from 1.07 to 3.28 for lakes and from 0.70 to 6.63 for impoundments and the variation among years was significant for both water types. We observed no annual variation in water surface area or mean depth, precluding either from explaining the variation in annual catch rates. We observed a significant relationship between mean depth and catch rate for lakes, but not impoundments. We observed no significant relationship relating surface area to catch rate for lakes or impoundments. Catch rates differed significantly from June to September for lakes but not impoundments. Annual variation in catch rates was best explained by the previous winter precipitation for both water types. The sex ratio was skewed toward males and differed significantly from June to September for lakes but not impoundments. The size structure was skewed toward large turtles. Understanding bycatch dynamics during fish population assessments is a critical first step to understanding the impact of biological sampling on nontarget species and may prove useful in minimizing future bycatch of western painted turtles.


Sign in / Sign up

Export Citation Format

Share Document