nontarget species
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 21)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Christopher Mudge ◽  
Bradley Sartain ◽  
Kurt Getsinger ◽  
Michael Netherland

This study conducted small-scale trials under various concentration and exposure time (CET) scenarios to determine florpyrauxifen-benzyl activity on dioecious hydrilla and hybrid watermilfoil and determine impact on water stargrass and elodea. Hydrilla treated with 12, 24, or 36 μg active ingredient (a.i.) L⁻¹ florpyrauxifen-benzyl and exposed for 12, 24, or 48 hr under outdoor mesocosm conditions was reduced in biomass by 30-75% at 8 weeks after treatment (WAT). An additional hydrilla trial at the same herbicide concentrations, but under longer exposures (24, 72, or 168 hr), resulted in 33–85% plant control. Under indoor conditions, hybrid watermilfoil dry weight decreased 98–100% with subsurface applications of florpyrauxifen-benzyl under CET scenarios of 3–12 μg a.i. L⁻¹ at 3–24 hr exposure times in a growth chamber trial. Under shorter exposure periods (0.5–4 hr) in a follow-up trial, low doses (3–9 μg a.i. L⁻¹) achieved 50–100% control of hybrid watermilfoil. In the same trial, the nontarget species water stargrass and elodea proved relatively tolerant to the florpyrauxifen-benzyl at doses up to 6 μg a.i. L⁻¹ (4 hr exposure) and 9 μg a.i. L⁻¹ (1 hr exposure). These small-scale trials demonstrate florpyrauxifen-benzyl’s potential to selectively manage invasive species.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Marica Mezzelani ◽  
Francesco Regoli

Environmental pharmaceuticals represent a threat of emerging concern for marine ecosystems. Widely distributed and bioaccumulated, these contaminants could provoke adverse effects on aquatic organisms through modes of action like those reported for target species. In contrast to pharmacological uses, organisms in field conditions are exposed to complex mixtures of compounds with similar, different, or even opposing therapeutic effects. This review summarizes current knowledge of the main cellular pathways modulated by the most common classes of environmental pharmaceuticals occurring in marine ecosystems and accumulated by nontarget species—including nonsteroidal anti-inflammatory drugs, psychiatric drugs, cardiovascular and lipid regulator agents, steroidal hormones, and antibiotics—and describes an intricate network of possible interactions with both synergistic and antagonistic effects on the same cellular targets and metabolic pathways. This complexity reveals the intrinsic limits of the single-chemical approach to predict the long-term consequences and future impact of pharmaceuticals at organismal, population, and community levels. Expected final online publication date for the Annual Review of Marine Science, Volume 14 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Insects ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 513
Author(s):  
Francesca Marini ◽  
Philip Weyl ◽  
Biljana Vidović ◽  
Radmila Petanović ◽  
Jeffrey Littlefield ◽  
...  

A classical biological control agent is an exotic host-specific natural enemy, which is intentionally introduced to obtain long-term control of an alien invasive species. Among the arthropods considered for this role, eriophyid mites are likely to possess the main attributes required: host specificity, efficacy, and long-lasting effects. However, so far, only a few species have been approved for release. Due to their microscopic size and the general lack of knowledge regarding their biology and behavior, working with eriophyids is particularly challenging. Furthermore, mites disperse in wind, and little is known about biotic and abiotic constraints to their population growth. All these aspects pose challenges that, if not properly dealt with, can make it particularly difficult to evaluate eriophyids as prospective biological control agents and jeopardize the general success of control programs. We identified some of the critical aspects of working with eriophyids in classical biological control of weeds and focused on how they have been or may be addressed. In particular, we analyzed the importance of accurate mite identification, the difficulties faced in the evaluation of their host specificity, risk assessment of nontarget species, their impact on the weed, and the final steps of mite release and post-release monitoring.


Science ◽  
2021 ◽  
Vol 372 (6537) ◽  
pp. 81-84
Author(s):  
Ralf Schulz ◽  
Sascha Bub ◽  
Lara L. Petschick ◽  
Sebastian Stehle ◽  
Jakob Wolfram

Pesticide impacts are usually discussed in the context of applied amounts while disregarding the large but environmentally relevant variations in substance-specific toxicity. Here, we systemically interpret changes in the use of 381 pesticides over 25 years by considering 1591 substance-specific acute toxicity threshold values for eight nontarget species groups. We find that the toxicity of applied insecticides to aquatic invertebrates and pollinators has increased considerably—in sharp contrast to the applied amount—and that this increase has been driven by highly toxic pyrethroids and neonicotinoids, respectively. We also report increasing applied toxicity to aquatic invertebrates and pollinators in genetically modified (GM) corn and to terrestrial plants in herbicide-tolerant soybeans since approximately 2010. Our results challenge the claims of a decrease in the environmental impacts of pesticide use.


Author(s):  
Fabia Barbosa Silva ◽  
Alan Carlos Costa ◽  
Clarice Aparecida Megguer ◽  
Júlien Silva Lima ◽  
Priscila Ferreira Batista ◽  
...  
Keyword(s):  

Author(s):  
Daisuke Hayasaka ◽  
Tomoki Numa ◽  
Takuo Sawahata

Abstract Prompt responses to invasive Latrodectus spiders introduced unintentionally are needed worldwide due to their medical and ecological importance. Latrodectus species are chemically controlled using pyrethroid insecticides despite concerns about the ecological impacts of these compounds on biodiversity/ecosystems. Here, the relative sensitivities (acute toxicity: 48-h LC50) of Latrodectus hasseltii Thorell and Latrodectus geometricus C.L. Koch from Japan to the conventional neurotoxic insecticide bifenthrin (pyrethroid) and a new candidate insecticide, fipronil (phenylpyrazole), were examined. Acute residual toxicity tests of these compounds in two nontarget spiders (Parasteatoda tepidariorum C.L. Koch (Araneae: Theridiidae), Badumna insignis L. Koch (Araneae: Desidae)) were conducted for comparison. To test whether bifenthrin and fipronil toxicities differed among the four spiders, corresponding species sensitivity distributions (SSDs) were compared, and hazardous concentrations were determined. Sensitivity (especially in the nontarget species) was two to four orders of magnitude higher for bifenthrin than for fipronil. The SSD patterns of the two insecticides differed significantly, with the spider communities being more sensitive to bifenthrin than to fipronil. The lethal bifenthrin concentration for Latrodectus may reduce spider populations by over 70–90%. If L. hasseltii (established throughout Japan) is targeted for effective population suppression rather than L. geometricus (with a limited distribution range) using the specified insecticide concentration (LC50 value) for fipronil, less than 20% of spider communities will be impacted. Chemical operations aimed at the effective population management and subsequent eradication of invasive Latrodectus spiders while supporting local biodiversity conservation would benefit from considerations of fipronil dosages and target species sensitivities.


Elem Sci Anth ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Brandi McKuin ◽  
Jordan T. Watson ◽  
Stephen Stohs ◽  
J. Elliott Campbell

Sustainability is a common goal and catchphrase used in conjunction with seafood, but the metrics used to determine the level of sustainability are poorly defined. Although the conservation statuses of target or nontarget fish stocks associated with fisheries have been scrutinized, the relative climate impacts of different fisheries are often overlooked. Although an increasing body of research seeks to understand and mitigate the climate forcing associated with different fisheries, little effort has sought to integrate these disparate disciplines to examine the synergies and trade-offs between conservation efforts and efforts to reduce climate impacts. We quantified the climate forcing per unit of fish protein associated with several different U.S. tuna fishing fleets, among the most important capture fisheries by both volume and value. We found that skipjack tuna caught by purse seine, a gear type that is often associated with relatively high bycatch of nontarget species, results in lower climate forcing than all other sources of proteins examined with the exception of plants. Conversely, skipjack tuna caught by trolling, a gear type that is often associated with relatively low bycatch of nontarget species, generates higher climate forcing than most other protein sources with the exception of beef. Because there is a range of selectivity and climate forcing impacts associated with fishing gears, examining the trade-offs associated with bycatch and climate forcing provides an opportunity for broadening the discourse about the sustainability of seafood. A central goal of more sustainable seafood practices is to minimize environmental impacts, thus mitigation efforts—whether they target conservation, habitat preservation, or climate impacts—should consider the unintended consequences on fisheries conservation.


Author(s):  
Stephanie Chancellor ◽  
David Scheel ◽  
Joel S Brown

ABSTRACT In a study of the foraging behaviour of the giant Pacific octopus Enteroctopus dofleini, we designed two types of experimental food patches to measure habitat preferences and perceptions of predation risk. The first patch successfully measured giving-up densities (GUDs), confirmed by octopus prey presence and higher foraging at sites with historically greater octopus presence. However, nontarget foragers also foraged on these experimental food patches. Our second floating patch design successfully excluded nontarget species from subtidal patches, and from intertidal patches at high tide, but allowed for foraging by E. dofleini. The second design successfully measured GUDs and suggested that octopus preferred foraging in a subtidal habitat compared to an intertidal habitat. We ascribe the higher GUD in the intertidal habitat to its higher predation risk relative to the subtidal habitat. The second patch design seems well suited for E. dofleini and, in conjunction with a camera system, could be used to provide behavioural indicators of the octopus's abundance, perceptions of habitat quality and predation risk.


Author(s):  
Olga Belevich ◽  
Yury Yurchenko ◽  
Alexander Alekseev ◽  
Oxana Kotina ◽  
Vyacheslav Odeyanko ◽  
...  

Abstract The toxic effects of an avermectin-impregnated fine plant powder (AIFP) against larval Aedes aegypti L. (Diptera: Culicidae), Culex modestus Ficalbi (Diptera: Culicidae), and Anopheles messeae Falleroni (Diptera: Culicidae), as well as selected nontarget aquatic invertebrates, were studied under laboratory conditions. The possibility of trophic transfer of avermectins (AVMs) through the food chain and their toxic effects on predaceous species fed AIFP-treated mosquito larvae was also evaluated. Among mosquitoes, Anopheles messeae were the most sensitive to AIFP, while Cx. modestus exhibited the least sensitivity to this formulation. Among nontarget aquatic invertebrates, the greatest toxicity of AIFP was observed for benthic species (larval Chironomus sp. Meigen (Diptera: Chironomidae), whereas predators (dragonflies, water beetles, and water bugs) exhibited the lowest AIFP sensitivity. AIFP sensitivity of the clam shrimp Lynceus brachyurus O. F. Muller (Diplostraca: Lynceidae), the phantom midge Chaoborus crystallinus De Geer (Diptera: Chaoboridae), and the mayfly Caenis robusta Eaton (Ephemeroptera: Caenidae) was intermediate and similar to the sensitivity of the mosquito Cx. modestus. However, these nontarget species were more resistant than An. messeae and Ae. aegypti. Solid-phase extraction of mosquito larvae treated with AIFP and subsequent high-performance liquid chromatography (HPLC) analysis of the extracts revealed an AVM concentration of up to 2.1 ± 0.3 μg/g. Feeding the creeping water bug Ilyocoris cimicoides L. (Hemiptera: Naucoridae) on the AIFP-treated mosquito larvae resulted in 51% mortality of the predaceous species. But no toxicity was observed for Aeshna mixta Latreille (Odonata: Aeshnidae) dragonfly larvae fed those mosquito larvae. The results of this work showed that this AVM formulation can be effective against mosquito larvae.


Sign in / Sign up

Export Citation Format

Share Document