scholarly journals First steps to mapping of exoplanets: modeling secondary eclipses and search inhomogeneities in the infrared brightness profiles

Author(s):  
A. A. Fedotov ◽  
◽  
G. M. Karelin ◽  

To detect inhomogeneities in the thermal radiation of exoplanet HD209458b, based on observations of the Spitzer space telescope processing and modeling of the light curves of secondary transits (eclipses) were carried out. Current work is the basis for the mapping of the temperature distribution on the dayside of the exoplanet. Tidal and electromagnetic star-planet interactions, together with climate effects, lead to nonuniform heating of the surface. We obtained that the depth of the eclipse was 0.101±0.009% of the total flux of the system and is consistent with the results of other works.

2010 ◽  
Author(s):  
Kunegunda E. Belle ◽  
D. W. Hoard ◽  
S. B. Howell ◽  
Vicky Kologera ◽  
Marc van der Sluys

1997 ◽  
Vol 15 (4) ◽  
pp. 631-638 ◽  
Author(s):  
Takayasu SATO ◽  
Akira OHKUBO ◽  
Takayoshi OHJI ◽  
Yoshinori HIRATA

1985 ◽  
Vol 52 (3) ◽  
pp. 529-532 ◽  
Author(s):  
D. D. Sayers ◽  
M. C. Potter

Traditional analysis treats the helix as a straight wire with the effects of nonuniform heating, torsion, and large curvature ignored. Using a helical coordinate system the governing partial differential equation including these effects is derived. The equation is then solved numerically using the finite element method. The results indicate a strong dependence of the temperature on the torsion parameter when the curvature parameter is significant. As the curvature parameter increases, the temperature distribution becomes skew-symmetric and the maximum temperature in the helix increases. Nonuniform heating influences the temperature distribution independent of the curvature and torsion.


1965 ◽  
Vol 87 (1) ◽  
pp. 117-130 ◽  
Author(s):  
R. D. Zerkle ◽  
J. Edward Sunderland

The transient, one-dimensional temperature distribution is determined for a slab, insulated on one face, and subjected to thermal radiation at the other face. The slab is initially at a uniform temperature and is assumed to be homogeneous, isotropic, and opaque; the physical properties are assumed to be independent of temperature. Transient temperature distributions for both heating and cooling situations are obtained by means of a thermal-electrical analog computer. A diode limiter circuit is used to simulate the nonlinear radiant heat flux. The transient temperature distributions are presented in a dimensionless, graphical form for a wide range of variables. Approximate analytical solutions are also given which complement and extend the solution charts over ranges of parameters not covered in the charts.


Author(s):  
Ghulam Rasool ◽  
Anum Shafiq ◽  
Yu-Ming Chu ◽  
Muhammad Shoaib Bhutta ◽  
Amjad Ali

Introduction: In this article Optimal Homotopy analysis method (oHAM) is used for exploration of the features of Cattaneo-Christov model in viscous and chemically reactive nanofluid flow through a porous medium with stretching velocity at the solid/sheet surface and free stream velocity at the free surface. Methods: The two important aspects, Brownian motion and Thermophoresis are considered. Thermal radiation is also included in present model. Based on the heat and mass flux, the Cattaneo-Christov model is implemented on the Temperature and Concentration distributions. The governing Partial Differential Equations (PDEs) are converted into Ordinary Differential Equations (ODEs) using similarity transformations. The results are achieved using the optimal homotopy analysis method (oHAM). The optimal convergence and residual errors have been calculated to preserve the validity of the model. Results: The results are plotted graphically to see the variations in three main profiles i.e. momentum, temperature and concentration profile. Conclusion: The outcomes indicate that skin friction enhances due to implementation of Darcy medium. It is also noted that the relaxation time parameter results in enhancement of the temperature distribution. Thermal radiation enhances the temperature distribution and so is the case with skin friction.


Sign in / Sign up

Export Citation Format

Share Document