The Effect of Curvature and Torsion on the Temperature Distribution in a Helix

1985 ◽  
Vol 52 (3) ◽  
pp. 529-532 ◽  
Author(s):  
D. D. Sayers ◽  
M. C. Potter

Traditional analysis treats the helix as a straight wire with the effects of nonuniform heating, torsion, and large curvature ignored. Using a helical coordinate system the governing partial differential equation including these effects is derived. The equation is then solved numerically using the finite element method. The results indicate a strong dependence of the temperature on the torsion parameter when the curvature parameter is significant. As the curvature parameter increases, the temperature distribution becomes skew-symmetric and the maximum temperature in the helix increases. Nonuniform heating influences the temperature distribution independent of the curvature and torsion.

2019 ◽  
pp. 292-297 ◽  
Author(s):  
Branislav Rehak ◽  
Volodymyr Lynnyk

An observer for a nonlinear biological system — biomass production in a bioreactor —is proposed. The specific growth rate is estimated. The key point of the observer design is finding a solution of a certain partial differential equation. Conditions guaranteeing existence of its solution are presented. The solution is approximated using finite element method. The results are illustrated by a numerical example.


Author(s):  
V T V S Ramachandra Rao ◽  
H Ramasubramanian ◽  
K N Seetharamu

Simulation of the temperature distribution in a brake drum of a commercial truck is carried out using the finite element method. Verification of the predicted values is done using an inertia dynamometer with a data logging system. The effect of variable convective heat-transfer coefficient and the effect of contact area are also studied. From the investigation it is concluded that the present model can be used for the simulation of temperature distribution in rigid brake drums during a fade test.


2021 ◽  
Vol 4 (1) ◽  
pp. 1-18
Author(s):  
Gokul KC ◽  
Ram Prasad Dulal

Poisson equation is an elliptic partial differential equation, a generalization of Laplace equation. Finite element method is a widely used method for numerically solving partial differential equations. Adaptive finite element method distributes more mesh nodes around the area where singularity of the solution happens. In this paper, Poisson equation is solved using finite element method in a rectangular domain with Dirichlet and Neumann boundary conditions. Posteriori error analysis is used to mark the refinement area of the mesh. Dorfler adaptive algorithm is used to refine the marked mesh. The obtained results are compared with exact solutions and displayed graphically.


Buildings ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 171
Author(s):  
Angeliki Papalou ◽  
Dimitrios K. Baros

Wildfires have always been a threat to forests and areas of high combustible vegetation. When they are not kept under control, they can spread to residential areas, creating severe damage and destruction. This paper examines the effects of the extreme heat conditions that developed during a wildfire on buildings as a function of their construction type. One of the deadliest wildfires in Greece (July 2018) is considered as a case study, and the damage that occurred to buildings during this event is presented. The temperature of the various structural subsystems in extreme heat conditions was estimated using the finite element method. Parameters that influenced the corresponding temperature distribution were identified. Simple guidelines are given to prevent or reduce damage in buildings exposed to wildfires.


2014 ◽  
Vol 685 ◽  
pp. 240-244 ◽  
Author(s):  
Peng Lan ◽  
Teng Fei Wang ◽  
Nian Li Lu

The out-of-plane stability of crane jib is studied considering the lateral flexibility of the fixed joint. The analytical expression of the out-of-plane buckling characteristic equation for the crane jib with single cable is obtained by establishing the bending deflection differential equation of jib under the instability critical state with the method of differential equation. The equilibrium equation of the fixed point in the lateral direction is introduced to solve the differential equation besides the boundary conditions. The analytical results obtained agree very well with the finite element method (FEM) results. To consider the lateral flexibility of the cable fixed joint, a dimensionless stiffness coefficient measuring the lateral constraint was introduced to derive the out-of-plane buckling characteristic equation. The degeneration forms of the characteristic equation under the limit cases of zero lateral stiffness, infinite lateral stiffness are further discussed. And the influence of the lateral stiffness of fixed joint on the stability of jib is investigated. It is shown that the increase of the lateral stiffness will significantly improve the buckling load of the crane jib especially when the lateral stiffness is very small.


2016 ◽  
Vol 687 ◽  
pp. 155-162
Author(s):  
Piotr Lacki ◽  
Zygmunt Kucharczyk ◽  
Tomasz Walasek

In the paper, the influence of friction on temperature distribution in the friction spot stir welding process of titanium grade 2 is analysed. It is assumed that the friction coefficient may be a function of temperature or the relative speed of the contact areas. The finite element method is used in the numerical calculations. Temperature distributions and temperature versus time for the analysed friction coefficients are presented. The results also show that applying a proper frictional model is very essential for the sake of heat generation during friction stir welding.


Sign in / Sign up

Export Citation Format

Share Document