scholarly journals Detection of Brucella Genome by Real Time PCR from the Milk of Small Ruminants in the West Bank, Palestine

Author(s):  
Elena Awwad ◽  
Mohammad Farraj ◽  
Tamer Essawi ◽  
Israr Sabri ◽  
Kamel Adwan ◽  
...  
2017 ◽  
Vol 1 (2) ◽  
pp. 29-30
Author(s):  
Chahinez Amira DAHMANI ◽  
Ahmed BENZAOUI ◽  
Fatima Zohra SEDIKI ◽  
Leila ADDA NEGGAZ ◽  
Faouzia ZEMANI FODIL ◽  
...  

Background: Numerous studies have shown that polymorphism rs231775 of the CTLA4 gene is strongly implicated in the development of ankylosing spondylitis (AS). Other polymorphisms of this gene are candidates that may have an additional effect in susceptibility to AS. For the first time, we searched for the association of rs3087243 polymorphism located in the 3'UTR region of the CTLA4 gene with the development of SA in the Algerian population. Methods: The study involved 200 subjects (80 AS patients recruited at the rheumatology service and 120 healthy individuals unrelated). Genotyping was performed by real-time PCR (Taqman®). Analysis of the results was carried out by IBM.SPSS.Statictis® software. Results: The distribution of allele frequencies showed a significant association between the GG genotype of the polymorphism rs3087243 and AS risk (OR= 1.77 [0.98-3.21], p=0.004). Conclusion: Our data would suggest that the 3'UTR region of the CTLA4 gene could have an impact on the development of SA in the West Algerian population. These results need to be confirmed on a larger sample.


Pathogens ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 929 ◽  
Author(s):  
Tariq Jamil ◽  
Khushal Khan Kasi ◽  
Falk Melzer ◽  
Muhammad Saqib ◽  
Qudrat Ullah ◽  
...  

Brucellosis, globally known bacterial zoonosis, is endemic to Pakistan. B. abortus in bovines, B. melitensis in small ruminants and B. canis in dogs mainly cause this disease. A total of 1821 sera (1196 from sheep and 625 from goats) from animal herds near the Pakistan–Afghanistan border were collected. In parallel testing of sera for anti-Brucella antibodies (B. abortus and B. melitensis) was carried out by RBPT and indirect ELISA. The presence of Brucella DNA in sera was tested by real-time PCR. The overall percentage of seropositive samples was 0.99 (18/1821) by both tests. All positive samples originated from Baluchistan territory which translated into 1.76% (18/1021). None of the positive sera had signals for Brucella DNA and none of sera from goats carried detectable antibodies. Both tests showed an almost perfect agreement with Kappa statistics. The flock size was found to be associated with the presence of anti-Brucella antibodies. The samples of Khyber Pakhtunkhwa (KPK) tested negative in both serological tests and hence were not processed for real-time PCR. The present study shows the presence of anti-Brucella antibodies in sheep in the Baluchistan region of Pakistan. Diagnostic services need to be improved and test and slaughter policies might be implemented for eradication of Brucella infection in these areas. Awareness about the infection is needed at the farmer’s level. Isolation and molecular biology of the isolates could help with understanding the prevailing etiology in a better way.


Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 509 ◽  
Author(s):  
Serena Tumino ◽  
Marco Tolone ◽  
Alessio Parco ◽  
Roberto Puleio ◽  
Giuseppe Arcoleo ◽  
...  

Contagious agalactia (CA), an infectious disease of small ruminants, caused by Mycoplasma agalactiae, is responsible for severe losses to dairy sheep production with substantial socioeconomic impacts on small-scale farmers. The diagnosis of CA is still problematic, time-consuming and requires well-equipped labs for confirmation of outbreaks. Therefore, rapid, accurate and cost-effective diagnostic tests are urgently needed. This work aims to validate a novel Loop-Mediated Isothermal Amplification (LAMP) test, based on the p40 target gene, for the detection of M. agalactiae in dairy sheep in order to confirm its potential practical use as a rapid and cheap field test. The LAMP system proposed in this study consists of a portable device composed of real-time fluorometer with the automatic interpretation of results displayed in a tablet. A total of 110 milk samples (90 positives and 20 negatives) were analysed to optimise the analysis procedure and to investigate the efficacy and robustness of the LAMP method. All samples were analysed using LAMP and conventional real-time PCR to compare the diagnostic sensitivity of the methods. The sensitivity of the LAMP was 10-fold higher than that of real-time PCR, with a detection limit up to 103 CFU/ml. The LAMP assay was able to detect M. agalactiae in 81 of 90 (90%, 95%CI 0.84–0.96) positive milk samples compared to 69 (77%, 95%CI 0.59–0.95) positive samples detected by real-time PCR; no positive signal occurred for any of the negative milk samples in either test. Therefore, the LAMP assay was found to be more sensitive than real-time PCR, low-cost, easy to perform, fast and not affected by contamination, indicating its potential as an effective diagnostic tool in the field level for the diagnosis of CA.


2012 ◽  
Vol 90 (2) ◽  
pp. 73-79 ◽  
Author(s):  
Claire A.M. Becker ◽  
Fabien Ramos ◽  
Eric Sellal ◽  
Sandrine Moine ◽  
François Poumarat ◽  
...  

2018 ◽  
Vol 44 (1) ◽  
pp. 4
Author(s):  
Natália Carrillo Gaeta ◽  
Marjorie Yumi Hasegawa ◽  
Bruno Leonardo Mendonça Ribeiro ◽  
Ana Lisa Gomes ◽  
Roberto Soares Castro ◽  
...  

Background: Small ruminants can be infected by lentiviruses, such as Maedi-Visna Virus (MVV) and Caprine ArthritisEncephalitis Virus (CAEV). The main route of transmission is via ingestion of contaminated colostrum and milk although vertical transmission can occur. Recently, several studies for molecular detection of CAEV in milk, using conventional PCR and real-time PCR are being carried out. Considering the elimination of CAEV through the milk of infected animals and the importance of this virus in the goat production, the aim of this study was to evaluate the elimination pattern of  CAEV in milk, evaluating the frequency and the concentration eliminated during the lactation.Materials, Methods & Results: A cohort of four negative females for CAEV was inseminated with semen experimentally infected with CAEV-Cork strain. They were located in stalls at the Hospital of Ruminants from School of Veterinary Medicine and Animal Science from University of São Paulo, Brazil. Goats received coast-cross hay, pellet feeding, mineral salt and water ad libitum. All females were observed every day during pregnancy. After lambing, kids received warm bovine colostrum and bovine milk powder during two months. Forty milk samples were collected at five-day interval during two months. A mixture of five milliliters from each teat was obtained and cDNA extraction was performed using DNA Mini Kit. Initially, real-time PCR was performed using an endogenous control for research of the constitutive gene (12S) for goats. Using positive samples in the first reaction, another reaction was performed using specific primers for lentiviruses based on the gag gene (conserved in retroviruses). In order to compare the results, nested-PCR was performed. After realtime PCR, cDNA was detected in samples from one female, corresponding to the day of calving, 14th, 20th, 25th, 35th and 40th day postpartum (15%; 6/40). The absence of amplified cDNA in thirty days postpartum, as well as in the final twenty days of lactation, was observed. Sample corresponding to the 7th day postpartum was not obtained.  The virus concentration throughout lactation grew up until forty days postpartum. After this period, there was no cDNA amplification. In Nested PCR, positive results were detected in samples corresponding to the day of calving, 15th days, 20th days and 30th days postpartum, only.Discussion: cDNA was detected in samples from one positive female, during forty days postpartum, but not on the 30th. On the other hand, amplified cDNA was observed on 30th day by nested-PCR. In this case, a false negative result was observed after real-time PCR, probably because sample corresponding to 30th days may not have been properly homogenized, so that the fraction used in real-time PCR was not representative. A higher number of positive samples were expected due to the higher sensitivity of the technique used. The low viral concentration in the milk due to high antibody titers, for example, leaded to a small number of cells containing the agent, reducing the possibility of detection. cDNA was not detected in any sample from three infected females. A possible false-positive serological reaction or the very low viral concentration in milk samples could explain the negative results, although some animals might be infected by a strain that could not be recognized by PCR.


2005 ◽  
Vol 147 (9) ◽  
pp. 373-379 ◽  
Author(s):  
F. Zeeh ◽  
P. Kuhnert ◽  
R. Miserez ◽  
M. G. Doherr ◽  
W. Zimmermann

Sign in / Sign up

Export Citation Format

Share Document