scholarly journals Alleviation of Drought Stress in White Clover after Inoculation with Arbuscular Mycorrhizal Fungi

2017 ◽  
Vol 45 (1) ◽  
pp. 220-224 ◽  
Author(s):  
Xiao-Qing TUO ◽  
Li HE ◽  
Ying-Ning ZOU

White clover is extremely susceptive to drought stress (DS), while it is not clear whether arbuscular mycorrhizal fungi (AMF) enhance drought tolerance of the plant. This study was carried out to evaluate effects of two AMF species, Funneliformis mosseae and Paraglomus occultum, on flavonoid, soluble protein, proline, and nutrient uptake in roots of white clover under well-watered (WW) and DS conditions. Root colonization by F. mosseae and P. occultum was heavily decreased by 7-week DS treatment. Mycorrhizal plants showed considerably greater biomass production in shoot, root, and total (shoot+root) than non-mycorrhizal plants, irrespective of soil water status. AMF inoculation led to significantly higher root soluble protein and proline accumulation under WW and DS and root flavonoid level under DS, regardless of AMF species. Root N, P, K and Cu concentrations were dramatically increased by mycorrhization under WW and DS, and root Ca, Mg, Fe, and Mn levels were significantly higher in AMF plants than in non-AMF plants under WW. It concluded that AMF strongly enhanced plant growth and drought tolerance of white clover by greater nutrient absorption and protective substances (soluble protein, proline, and flavonoid) accumulation.

2021 ◽  
Vol 49 (1) ◽  
pp. 12209
Author(s):  
Sheng-Min LIANG ◽  
Dao-Ju JIANG ◽  
Miao-Miao XIE ◽  
Ying-Ning ZOU ◽  
Qiang-Sheng WU ◽  
...  

The aim of the present study was to analyze the effects of two arbuscular mycorrhizal fungi (AMF), Funneliformis mosseae and Paraglomus occultum, on leaf water status, root morphology, root sugar accumulation, root abscisic acid (ABA) levels, root malondialdehyde (MDA) content, and root antioxidant enzyme activities in white clover (Trifolium repens L.) exposed to well-watered (WW) and drought stress (DS) conditions. The results showed that root colonization by F. mosseae and P. occultum was significantly decreased by 7-week soil drought treatment. Under drought stress conditions, mycorrhizal fungal treatment considerably stimulated root total length, surface area and volume, as compared with non-mycorrhizal controls. In addition, inoculation with arbuscular mycorrhizal fungi also increased leaf relative water content and accelerated the accumulation of root glucose and fructose under drought stress. Mycorrhizal plants under drought stress registered higher activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) and ABA levels in roots, while lower MDA contents, relative to non-mycorrhizal plants. As a result, mycorrhiza-inoculated plants represented better physiological activities (e.g. antioxidant defense systems, root morphology, and sugar accumulation) than non-inoculated plants in response to soil drought, whilst P. occultum had superior effects than F. mosseae.


New Forests ◽  
2018 ◽  
Vol 50 (4) ◽  
pp. 593-604 ◽  
Author(s):  
Zhongfeng Zhang ◽  
Jinchi Zhang ◽  
Guangping Xu ◽  
Longwu Zhou ◽  
Yanqiong Li

2015 ◽  
Vol 28 (4) ◽  
pp. 408-419 ◽  
Author(s):  
Zhilei Liu ◽  
Yuanjing Li ◽  
Lina Ma ◽  
Haichao Wei ◽  
Jianfeng Zhang ◽  
...  

Mitogen-activated protein kinase (MAPK) cascades play important roles in the stress response in both plants and microorganisms. The mycorrhizal symbiosis established between arbuscular mycorrhizal fungi (AMF) and plants can enhance plant drought tolerance, which might be closely related to the fungal MAPK response and the molecular dialogue between fungal and soybean MAPK cascades. To verify the above hypothesis, germinal Glomus intraradices (syn. Rhizophagus irregularis) spores and potted experiments were conducted. The results showed that AMF GiMAPKs with high homology with MAPKs from Saccharomyces cerevisiae had different gene expression patterns under different conditions (nitrogen starvation, abscisic acid treatment, and drought). Drought stress upregulated the levels of fungi and soybean MAPK transcripts in mycorrhizal soybean roots, indicating the possibility of a molecular dialogue between the two symbiotic sides of symbiosis and suggesting that they might cooperate to regulate the mycorrhizal soybean drought-stress response. Meanwhile, the changes in hydrogen peroxide, soluble sugar, and proline levels in mycorrhizal soybean as well as in the accelerated exchange of carbon and nitrogen in the symbionts were contributable to drought adaptation of the host plants. Thus, it can be preliminarily inferred that the interactions of MAPK signals on both sides, symbiotic fungus and plant, might regulate the response of symbiosis and, thus, improve the resistance of mycorrhizal soybean to drought stress.


2019 ◽  
Vol 20 (17) ◽  
pp. 4199 ◽  
Author(s):  
Ali Bahadur ◽  
Asfa Batool ◽  
Fahad Nasir ◽  
Shengjin Jiang ◽  
Qin Mingsen ◽  
...  

Arbuscular mycorrhizal fungi (AMF) establish symbiotic interaction with 80% of known land plants. It has a pronounced impact on plant growth, water absorption, mineral nutrition, and protection from abiotic stresses. Plants are very dynamic systems having great adaptability under continuously changing drying conditions. In this regard, the function of AMF as a biological tool for improving plant drought stress tolerance and phenotypic plasticity, in terms of establishing mutualistic associations, seems an innovative approach towards sustainable agriculture. However, a better understanding of these complex interconnected signaling pathways and AMF-mediated mechanisms that regulate the drought tolerance in plants will enhance its potential application as an innovative approach in environmentally friendly agriculture. This paper reviews the underlying mechanisms that are confidently linked with plant–AMF interaction in alleviating drought stress, constructing emphasis on phytohormones and signaling molecules and their interaction with biochemical, and physiological processes to maintain the homeostasis of nutrient and water cycling and plant growth performance. Likewise, the paper will analyze how the AMF symbiosis helps the plant to overcome the deleterious effects of stress is also evaluated. Finally, we review how interactions between various signaling mechanisms governed by AMF symbiosis modulate different physiological responses to improve drought tolerance. Understanding the AMF-mediated mechanisms that are important for regulating the establishment of the mycorrhizal association and the plant protective responses towards unfavorable conditions will open new approaches to exploit AMF as a bioprotective tool against drought.


2021 ◽  
Author(s):  
Jing Tao ◽  
Fengxin Dong ◽  
Yihan Wang ◽  
Hui Chen ◽  
Ming Tang

Abstract Background: Arbuscular mycorrhizal fungi (AMF) form a symbiotic relationship with host plants, which can promote plants to absorb more water and nutrients, and thus improve the stress resistance of plants. Our study aimed to investigate the effects of Rhizophagus irregularis on Populus simonii × P. nigra seedlings under drought stress. Results: The experiment was a completely random design with two water conditions (well-watered or drought stress) and two AMF treatments (inoculated with or without R. irregularis). Our results showed that mycorrhizal seedlings performed less oxidative damage and stronger tolerance of drought, which recorded higher photosynthesis and less concentrations of Malondialdehyde (MDA), H2O2, and proline under drought stress versus non-mycorrhizal seedlings. Under drought stress, AMF inoculation reduced soluble sugar concentration in leaves but promoted its accumulation in roots. The superoxide dismutase (SOD) activity in leaves and roots, and catalase (CAT) activity in roots of mycorrhizal seedlings were lower than non-mycorrhizal seedlings, but CAT activity in leaves of mycorrhizal seedlings was higher than non-mycorrhizal seedlings under drought stress. Drought stress and AMF inoculation both induced the expressions of MAPKs of P. simonii × P. nigra, but the expression patterns of MAPKs under four treatments were obviously different.Conclusions: Overall, our results demonstrated that mycorrhizal seedlings had less oxidative damage and stronger tolerance to drought. MAPKs expressions of P. simonii×P. nigra (PsnMAPKs) were induced by drought stress and AMF inoculation, and the expression patterns of PsnMAPKs in response to drought stress were different between mycorrhizal and non-mycorrhizal seedlings. Non-mycorrhizal seedlings may be adapted to drought by up-regulating MAPKs expressions leading to stomatal closure. Drought stress decreased serval PsnMAPKs expressions induced by AMF inoculation, which may be associated with mycorrhizal colonization.


Biologia ◽  
2006 ◽  
Vol 61 (19) ◽  
Author(s):  
Nasser Aliasgharzad ◽  
Mohammad Neyshabouri ◽  
Ghobad Salimi

AbstractMycorrhizal symbiosis can potentially improve water uptake by plants. In a controlled pot culture experiment, soybean plants were inoculated with two species of arbuscular mycorrhizal fungi, Glomus mosseae (Gm) or Glomus etunicatum (Ge), or left non-inoculated (NM) as control in a sterile soil. Four levels of soil moisture (Field capacity, 0.85 FC, 0.7 FC, 0.6 FC) in the presence or absence of the Bradyrhizobium japonicum, were applied to the pots. Relative water content (RWC) of leaf at both plant growth stages (flowering and seed maturation) decreased with the dryness of soil; RWC was higher in all mycorrhizal than non-mycorrhizal plants irrespective of soil moisture level. At the lowest moisture level (0.6 FC) Ge was more efficient than Gm in maintaining high leaf RWC. Leaf water potential (LWP) had the same trend as RWC in flowering stage but it was not significantly influenced by decrease in soil moisture to 0.7 FC during seed maturation stage. Seed and shoot dry weights were affected negatively by drought stress. Mycorrhizal plants, however had significantly higher seed and shoot dry weights than non-mycorrhizal plants at all moisture levels except for seed weight at 0.6 FC. Root mycorrhizal colonization was positively correlated with RWC, LWP, shoot N and K, and seed weight, implying improvement of plant water and nutritional status as a result of colonization. Regardless of moisture treatments, bacterial inoculation caused a significant enhancement in N content and the highest N occurred in rhizobial inoculated plants at 0.85 FC and 0.7 FC. Shoot K was enhanced considerably by both bacterial and fungal inoculations, particularly in plants with dual inoculations where the highest shoot K levels were found. The relatively higher shoot and seed dry weights in plants inoculated with both G. etunicatum and B. japonicum could be ascribed to their higher RWC and LWP, suggesting that drought avoidance is main mechanism of this plant-microbe association in alleviation of water stress in soybean.


Sign in / Sign up

Export Citation Format

Share Document