scholarly journals H∞ Robust T-S Fuzzy Design for Uncertain Nonlinear Systems with State Delays Based on Sliding Mode Control

Author(s):  
Xizheng Zhang ◽  
Yaonan Wang ◽  
Xiaofang Yuan

This paper presents the fuzzy design of sliding mode control (SMC) for nonlinear systems with state delay, which can be represented by a Takagi-Sugeno (TS) model with uncertainties. There exist the parameter uncertainties in both the state and input matrices, as well as the unmatched external disturbance. The key feature of this work is the integration of SMC method with H∞ technique such that the robust asymptotically stability with a prescribed disturbance attenuation level γ can be achieved. A sufficient condition for the existence of the desired SMC is obtained by solving a set of linear matrix inequalities (LMIs). The reachability of the specified switching surface is proven. Simulation results show the validity of the proposed method.

2019 ◽  
Vol 26 (7-8) ◽  
pp. 399-412
Author(s):  
Wajdi Saad ◽  
Anis Sellami ◽  
Germain Garcia

In this paper, the problem of adaptive sliding mode control for varied one-sided Lipschitz nonlinear systems with uncertainties is investigated. In contrast to existing sliding mode control design methods, the considered models, in the current study, are affected by nonlinear control inputs, one-sided Lipschitz nonlinearities, unknown disturbances and parameter uncertainties. At first, to design the sliding surface, a specific switching function is defined. The corresponding nonlinear equivalent control is extracted and the resulting sliding mode dynamic is given. Novel synthesis conditions of asymptotic stability are derived in terms of linear matrix inequalities. Thereafter, to ensure the reachability of system states and the occurrence of the sliding mode, the sliding mode controller is designed. Any knowledge of the upper bound on the perturbation is not required and an adaptation law is proposed. At last, two illustrative examples are introduced.


2020 ◽  
Vol 26 (23-24) ◽  
pp. 2297-2315
Author(s):  
Valiollah Ghaffari

The proportional-derivative sliding-mode control will be designed and tuned in the trajectory tracking of a robot manipulator which operates on uncertain dynamic environments. For achieving these goals, first, a linear matrix inequality–based framework is suggested to design a robust proportional-derivative sliding-mode control in the presence of external disturbances. Next, the parameters of the proportional-derivative sliding-mode control law will be tuned via another minimization problem subjected to some linear matrix inequality constraints. Thus, the controller parameters can be automatically updated via the solution of the optimization problem. The results are successfully used in the robot manipulator with considering two reference paths and some different loads. The simulation results show the effectiveness of the proposed method in comparison with the same technique.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yueling Wang ◽  
Runjie Shi ◽  
Hongbin Wang

This paper presents a unique ESO-based fuzzy sliding-mode controller (FSMC-ESO) for a 3-DOF serial-parallel hybrid humanoid arm (HHA) for the trajectory tracking control problem. The dynamic model of the HHA is obtained by Lagrange method and is nonlinear in dynamics with inertia uncertainty and external disturbance. The FSMC-ESO is based on the combination of the sliding-mode control (SMC), extended state observer (ESO) theory, and fuzzy control (FC). The SMC is insensitive to both internal parameter uncertainties and external disturbances. The motivation for using ESO is to estimate the disturbance in real-time. The fuzzy parameter self-tuning strategy is proposed to adjust the switching gain on line according to the running state of the system. The stability of the system is guaranteed in the sense of the Lyapunov stability theorem. The effectiveness and robustness of the designed FSMC-ESO are illustrated by simulations.


2020 ◽  
pp. 107754632096099
Author(s):  
Roya Sadeghimehr ◽  
Amirhossein Nikoofard ◽  
Ali Khaki Sedigh

Dealing with torsional vibrations and stick–slip oscillations of a drill string system is a challenging engineering task in the oil drilling process because of the harmful and costly consequences of such vibrations. In this article, the drill string system is modeled using a lumped-parameter model with four degrees of freedom, and the bit–rock contact is represented by a nonlinear function of a bit velocity. Also, tracking the desired velocity of a drill string system with known constant input delay is addressed in the presence of external disturbance and parameter uncertainties by applying the Smith predictor–based sliding mode control method. The performance of the smith predictor–based sliding mode control with input delay and disturbance in tracking the desired velocity and controlling the stick–slip oscillations is compared with the sliding mode control with/without input delay. The system output’s sensitivity to the delay parameter is also investigated, indicating how the bit velocity changes concerning the delay parameter. The proper choice of adaptation gain is determinative in the performance of the controller, and its impact is investigated. Moreover, the robustness of the smith predictor–based sliding mode control is shown by changing the weight on the bit parameter. Simulation results demonstrate the effectiveness of the proposed method.


2011 ◽  
Vol 327 ◽  
pp. 12-16 ◽  
Author(s):  
Yi Min Li ◽  
Yang Cai

A novel Adaptive Fuzzy Sliding Mode Control (AFSMC) methodology is proposed in this paper based on the integration of Sliding Mode Control (SMC) and Adaptive Fuzzy Control (AFC).To get rid of the chattering and the bound of uncertainty, an adaptive fuzzy logic system design method introduced for the switching gain is proposed. The main advantage of our proposed methodology is that the nonlinear systems are unknown and no knowledge of the bounds of parameters, uncertainties and external disturbance are not required in advance.the design for the switching gain which will relax the requirement for the bound of uncertainty can ensure stability. The simulation results illustrate the effectiveness of the method.


Author(s):  
Bhausaheb B. Musmade ◽  
Balasaheb M. Patre

In this paper, a class of uncertain nonlinear systems is investigated and a sliding mode control (SMC) design is presented. The method is proposed for uncertain systems with model uncertainties, nonlinear dynamics and external disturbances. Using nominal system and related bounds of uncertainties, a chattering alleviating scheme is also proposed, which can ensure the robust SMC law. The performance and the significance of the controlled system are investigated under variation in system parameters and also in presence of an external disturbance. The simulation results indicate that performance of the proposed controller is effective compared to the existing controllers.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Peng Zhang ◽  
Yonggui Kao ◽  
Jingyan Zhu ◽  
Wei Li

The paper is concerned with sliding mode control for uncertain time-delay systems subjected to input nonlinearity and stochastic perturbations. Using the sliding mode control, a robust law is derived to guarantee the reachability of the sliding surface in a finite time interval. The sufficient conditions on asymptotic stability of the error system and sliding mode dynamics with disturbance attenuation level are presented in terms of linear matrix inequalities (LMIs). Finally, an example is provided to illustrate the efficiency and effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document