scholarly journals On Polar, Trivially Perfect Graphs

Author(s):  
Mihai Talmaciu ◽  
Elena Nechita

<p>During the last decades, different types of decompositions have been processed in the field of graph theory. In various problems, for example in the construction of recognition algorithms, frequently appears the so-called weakly decomposition of graphs.<br />Polar graphs are a natural extension of some classes of graphs like bipartite graphs, split graphs and complements of bipartite graphs. Recognizing a polar graph is known to be NP-complete. For this class of graphs, polynomial algorithms for the maximum stable set problem are unknown and algorithms for the dominating set problem are also NP-complete.<br />In this paper we characterize the polar graphs using the weakly decomposition, give a polynomial time algorithm for recognizing graphs that are both trivially perfect and polar, and directly calculate the domination number. For the stability number and clique number, we give polynomial time algorithms. </p>

2020 ◽  
Vol 12 (05) ◽  
pp. 2050057
Author(s):  
S. S. Kamath ◽  
A. Senthil Thilak ◽  
M. Rashmi

The concept of network is predominantly used in several applications of computer communication networks. It is also a fact that the dominating set acts as a virtual backbone in a communication network. These networks are vulnerable to breakdown due to various causes, including traffic congestion. In such an environment, it is necessary to regulate the traffic so that these vulnerabilities could be reasonably controlled. Motivated by this, [Formula: see text]-part degree restricted domination is defined as follows. For a positive integer [Formula: see text], a dominating set [Formula: see text] of a graph [Formula: see text] is said to be a [Formula: see text]-part degree restricted dominating set ([Formula: see text]-DRD set) if for all [Formula: see text], there exists a set [Formula: see text] such that [Formula: see text] and [Formula: see text]. The minimum cardinality of a [Formula: see text]-DRD set of a graph [Formula: see text] is called the [Formula: see text]-part degree restricted domination number of [Formula: see text] and is denoted by [Formula: see text]. In this paper, we present a polynomial time reduction that proves the NP -completeness of the [Formula: see text]-part degree restricted domination problem for bipartite graphs, chordal graphs, undirected path graphs, chordal bipartite graphs, circle graphs, planar graphs and split graphs. We propose a polynomial time algorithm to compute a minimum [Formula: see text]-DRD set of a tree and minimal [Formula: see text]-DRD set of a graph.


2020 ◽  
Vol 28 (3) ◽  
pp. 153-170
Author(s):  
J. Pavan Kumar ◽  
P.Venkata Subba Reddy

AbstractA set S ⊆ V is a dominating set in G if for every u ∈ V \ S, there exists v ∈ S such that (u, v) ∈ E, i.e., N[S] = V . A dominating set S is an isolate dominating set (IDS) if the induced subgraph G[S] has at least one isolated vertex. It is known that Isolate Domination Decision problem (IDOM) is NP-complete for bipartite graphs. In this paper, we extend this by showing that the IDOM is NP-complete for split graphs and perfect elimination bipartite graphs, a subclass of bipartite graphs. A set S ⊆ V is an independent set if G[S] has no edge. A set S ⊆ V is a secure dominating set of G if, for each vertex u ∈ V \ S, there exists a vertex v ∈ S such that (u, v) ∈ E and (S \ {v}) ∪ {u} is a dominating set of G. In addition, we initiate the study of a new domination parameter called, independent secure domination. A set S ⊆ V is an independent secure dominating set (InSDS) if S is an independent set and a secure dominating set of G. The minimum size of an InSDS in G is called the independent secure domination number of G and is denoted by γis(G). Given a graph G and a positive integer k, the InSDM problem is to check whether G has an independent secure dominating set of size at most k. We prove that InSDM is NP-complete for bipartite graphs and linear time solvable for bounded tree-width graphs and threshold graphs, a subclass of split graphs. The MInSDS problem is to find an independent secure dominating set of minimum size, in the input graph. Finally, we show that the MInSDS problem is APX-hard for graphs with maximum degree 5.


2019 ◽  
Vol 17 (2) ◽  
pp. 257-263
Author(s):  
Ruzayn Quaddoura

A 2-coloring of a hypergraph is a mapping from its vertex set to a set of two colors such that no edge is monochromatic. The hypergraph 2- Coloring Problem is the question whether a given hypergraph is 2-colorable. It is known that deciding the 2-colorability of hypergraphs is NP-complete even for hypergraphs whose hyperedges have size at most 3. In this paper, we present a polynomial time algorithm for deciding if a hypergraph, whose incidence graph is P_8-free and has a dominating set isomorphic to C_8, is 2-colorable or not. This algorithm is semi generalization of the 2-colorability algorithm for hypergraph, whose incidence graph is P_7-free presented by Camby and Schaudt.


2006 ◽  
Vol Vol. 8 ◽  
Author(s):  
Andreas Brandstädt ◽  
Tilo Klembt ◽  
Suhail Mahfud

International audience The Maximum Weight Stable Set (MWS) Problem is one of the fundamental problems on graphs. It is well-known to be NP-complete for triangle-free graphs, and Mosca has shown that it is solvable in polynomial time when restricted to P6- and triangle-free graphs. We give a complete structure analysis of (nonbipartite) P6- and triangle-free graphs which are prime in the sense of modular decomposition. It turns out that the structure of these graphs is extremely simple implying bounded clique-width and thus, efficient algorithms exist for all problems expressible in terms of Monadic Second Order Logic with quantification only over vertex predicates. The problems Vertex Cover, MWS, Maximum Clique, Minimum Dominating Set, Steiner Tree, and Maximum Induced Matching are among them. Our results improve the previous one on the MWS problem by Mosca with respect to structure and time bound but also extends a previous result by Fouquet, Giakoumakis and Vanherpe which have shown that bipartite P6-free graphs have bounded clique-width. Moreover, it covers a result by Randerath, Schiermeyer and Tewes on polynomial time 3-colorability of P6- and triangle-free graphs.


2020 ◽  
Vol 18 (1) ◽  
pp. 873-885
Author(s):  
Gülnaz Boruzanlı Ekinci ◽  
Csilla Bujtás

Abstract Let k be a positive integer and let G be a graph with vertex set V(G) . A subset D\subseteq V(G) is a k -dominating set if every vertex outside D is adjacent to at least k vertices in D . The k -domination number {\gamma }_{k}(G) is the minimum cardinality of a k -dominating set in G . For any graph G , we know that {\gamma }_{k}(G)\ge \gamma (G)+k-2 where \text{&#x0394;}(G)\ge k\ge 2 and this bound is sharp for every k\ge 2 . In this paper, we characterize bipartite graphs satisfying the equality for k\ge 3 and present a necessary and sufficient condition for a bipartite graph to satisfy the equality hereditarily when k=3 . We also prove that the problem of deciding whether a graph satisfies the given equality is NP-hard in general.


Author(s):  
Mohsen Alambardar Meybodi

A set [Formula: see text] of a graph [Formula: see text] is called an efficient dominating set of [Formula: see text] if every vertex [Formula: see text] has exactly one neighbor in [Formula: see text], in other words, the vertex set [Formula: see text] is partitioned to some circles with radius one such that the vertices in [Formula: see text] are the centers of partitions. A generalization of this concept, introduced by Chellali et al. [k-Efficient partitions of graphs, Commun. Comb. Optim. 4 (2019) 109–122], is called [Formula: see text]-efficient dominating set that briefly partitions the vertices of graph with different radiuses. It leads to a partition set [Formula: see text] such that each [Formula: see text] consists a center vertex [Formula: see text] and all the vertices in distance [Formula: see text], where [Formula: see text]. In other words, there exist the dominators with various dominating powers. The problem of finding minimum set [Formula: see text] is called the minimum [Formula: see text]-efficient domination problem. Given a positive integer [Formula: see text] and a graph [Formula: see text], the [Formula: see text]-efficient Domination Decision problem is to decide whether [Formula: see text] has a [Formula: see text]-efficient dominating set of cardinality at most [Formula: see text]. The [Formula: see text]-efficient Domination Decision problem is known to be NP-complete even for bipartite graphs [M. Chellali, T. W. Haynes and S. Hedetniemi, k-Efficient partitions of graphs, Commun. Comb. Optim. 4 (2019) 109–122]. Clearly, every graph has a [Formula: see text]-efficient dominating set but it is not correct for efficient dominating set. In this paper, we study the following: [Formula: see text]-efficient domination problem set is NP-complete even in chordal graphs. A polynomial-time algorithm for [Formula: see text]-efficient domination in trees. [Formula: see text]-efficient domination on sparse graphs from the parametrized complexity perspective. In particular, we show that it is [Formula: see text]-hard on d-degenerate graphs while the original dominating set has Fixed Parameter Tractable (FPT) algorithm on d-degenerate graphs. [Formula: see text]-efficient domination on nowhere-dense graphs is FPT.


10.37236/104 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
E. R. Vaughan

Gerechte designs are a specialisation of latin squares. A gerechte design is an $n\times n$ array containing the symbols $\{1,\dots,n\}$, together with a partition of the cells of the array into $n$ regions of $n$ cells each. The entries in the cells are required to be such that each row, column and region contains each symbol exactly once. We show that the problem of deciding if a gerechte design exists for a given partition of the cells is NP-complete. It follows that there is no polynomial time algorithm for finding gerechte designs with specified partitions unless P=NP.


Author(s):  
Hadi Alizadeh ◽  
Didem Gözüpek

A dominating set in a graph $G=(V,E)$ is a set $S$ such that every vertex of $G$ is either in $S$ or adjacent to a vertex in $S$. While the minimum cardinality of a dominating set in $G$ is called the domination number of $G$ denoted by $\gamma(G)$, the maximum cardinality of a minimal dominating set in $G$ is called the upper domination number of $G$ denoted by $\Gamma(G)$. We call the difference between these two parameters the \textit{domination gap} of $G$ and denote it by $\mu_d(G) = \Gamma(G) - \gamma(G)$. While a graph $G$ with $\mu_d(G)=0$ is said to be a \textit{well-dominated} graph, we call a graph $G$ with $\mu_d(G)=1$ an \textit{almost well-dominated} graph. In this work, we first establish an upper bound for the cardinality of bipartite graphs with $\mu_d(G)=k$, where $k\geq1$, and minimum degree at least two. We then provide a complete structural characterization of almost well-dominated bipartite graphs with minimum degree at least two. While the results by Finbow et al.~\cite{domination} imply that a 4-cycle is the only well-dominated bipartite graph with minimum degree at least two, we prove in this paper that there exist precisely 31 almost well-dominated bipartite graphs with minimum degree at least two.


2021 ◽  
Author(s):  
Yasaman KalantarMotamedi

P vs NP is one of the open and most important mathematics/computer science questions that has not been answered since it was raised in 1971 despite its importance and a quest for a solution since 2000. P vs NP is a class of problems that no polynomial time algorithm exists for any. If any of the problems in the class gets solved in polynomial time, all can be solved as the problems are translatable to each other. One of the famous problems of this kind is Hamiltonian cycle. Here we propose a polynomial time algorithm with rigorous proof that it always finds a solution if there exists one. It is expected that this solution would address all problems in the class and have a major impact in diverse fields including computer science, engineering, biology, and cryptography.


2020 ◽  
Vol 40 (3) ◽  
pp. 375-382
Author(s):  
Narges Ghareghani ◽  
Iztok Peterin ◽  
Pouyeh Sharifani

A subset \(D\) of the vertex set \(V\) of a graph \(G\) is called an \([1,k]\)-dominating set if every vertex from \(V-D\) is adjacent to at least one vertex and at most \(k\) vertices of \(D\). A \([1,k]\)-dominating set with the minimum number of vertices is called a \(\gamma_{[1,k]}\)-set and the number of its vertices is the \([1,k]\)-domination number \(\gamma_{[1,k]}(G)\) of \(G\). In this short note we show that the decision problem whether \(\gamma_{[1,k]}(G)=n\) is an \(NP\)-hard problem, even for bipartite graphs. Also, a simple construction of a bipartite graph \(G\) of order \(n\) satisfying \(\gamma_{[1,k]}(G)=n\) is given for every integer \(n \geq (k+1)(2k+3)\).


Sign in / Sign up

Export Citation Format

Share Document