scholarly journals A Spectral Clustering Algorithm Improved by P Systems

2018 ◽  
Vol 13 (5) ◽  
pp. 759-771 ◽  
Author(s):  
Guangchun Chen ◽  
Juan Hu ◽  
Hong Peng ◽  
Jun Wang ◽  
Xiangnian Huang

Using spectral clustering algorithm is diffcult to find the clusters in the cases that dataset has a large difference in density and its clustering effect depends on the selection of initial centers. To overcome the shortcomings, we propose a novel spectral clustering algorithm based on membrane computing framework, called MSC algorithm, whose idea is to use membrane clustering algorithm to realize the clustering component in spectral clustering. A tissue-like P system is used as its computing framework, where each object in cells denotes a set of cluster centers and velocity-location model is used as the evolution rules. Under the control of evolutioncommunication mechanism, the tissue-like P system can obtain a good clustering partition for each dataset. The proposed spectral clustering algorithm is evaluated on three artiffcial datasets and ten UCI datasets, and it is further compared with classical spectral clustering algorithms. The comparison results demonstrate the advantage of the proposed spectral clustering algorithm.

2012 ◽  
Vol 482-484 ◽  
pp. 2109-2113
Author(s):  
Qiang Li

Unlike those traditional clustering algorithms, the spectral clustering algorithm can be applied to non-convex sphere of sample spaces and be converged to global optimal. As a entry point that the similar of spectral clustering, introduce improved weighted fuzzy similar matrix to spectral in this paper which avoids influence from parameters changes of fuzzy similar matrix in traditional spectral clustering on clustering effect and improves the effectiveness of clustering. It is more actual and scientific, which is tested based on UCI data set.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 596
Author(s):  
Krishna Kumar Sharma ◽  
Ayan Seal ◽  
Enrique Herrera-Viedma ◽  
Ondrej Krejcar

Calculating and monitoring customer churn metrics is important for companies to retain customers and earn more profit in business. In this study, a churn prediction framework is developed by modified spectral clustering (SC). However, the similarity measure plays an imperative role in clustering for predicting churn with better accuracy by analyzing industrial data. The linear Euclidean distance in the traditional SC is replaced by the non-linear S-distance (Sd). The Sd is deduced from the concept of S-divergence (SD). Several characteristics of Sd are discussed in this work. Assays are conducted to endorse the proposed clustering algorithm on four synthetics, eight UCI, two industrial databases and one telecommunications database related to customer churn. Three existing clustering algorithms—k-means, density-based spatial clustering of applications with noise and conventional SC—are also implemented on the above-mentioned 15 databases. The empirical outcomes show that the proposed clustering algorithm beats three existing clustering algorithms in terms of its Jaccard index, f-score, recall, precision and accuracy. Finally, we also test the significance of the clustering results by the Wilcoxon’s signed-rank test, Wilcoxon’s rank-sum test, and sign tests. The relative study shows that the outcomes of the proposed algorithm are interesting, especially in the case of clusters of arbitrary shape.


2014 ◽  
Vol 687-691 ◽  
pp. 1350-1353
Author(s):  
Li Li Fu ◽  
Yong Li Liu ◽  
Li Jing Hao

Spectral clustering algorithm is a kind of clustering algorithm based on spectral graph theory. As spectral clustering has deep theoretical foundation as well as the advantage in dealing with non-convex distribution, it has received much attention in machine learning and data mining areas. The algorithm is easy to implement, and outperforms traditional clustering algorithms such as K-means algorithm. This paper aims to give some intuitions on spectral clustering. We describe different graph partition criteria, the definition of spectral clustering, and clustering steps, etc. Finally, in order to solve the disadvantage of spectral clustering, some improvements are introduced briefly.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Shuxia Ren ◽  
Shubo Zhang ◽  
Tao Wu

The similarity graphs of most spectral clustering algorithms carry lots of wrong community information. In this paper, we propose a probability matrix and a novel improved spectral clustering algorithm based on the probability matrix for community detection. First, the Markov chain is used to calculate the transition probability between nodes, and the probability matrix is constructed by the transition probability. Then, the similarity graph is constructed with the mean probability matrix. Finally, community detection is achieved by optimizing the NCut objective function. The proposed algorithm is compared with SC, WT, FG, FluidC, and SCRW on artificial networks and real networks. Experimental results show that the proposed algorithm can detect communities more accurately and has better clustering performance.


2021 ◽  
Vol 2 (4) ◽  
pp. 1057-1072
Author(s):  
Ilias Zacharakis ◽  
Dimitrios Giagopoulos

The advancements in the automotive, aviation, and aerospace industry have led to an increased usage of CFRP high-pressure gas tanks. In order to avoid any fatal accidents, the inspection procedures require accuracy, but also practicality, to be used in the industry. The presented work focuses on response-only metrics from vibrational experimental measurements of the CFRP tank. The power spectral density and transmittance function curves are both compared for the accuracy and ability to be used as metrics for damage detection. Along with the selection of the proper metric, an appropriate clustering algorithm that can accurately group similar states of the structure is of high importance. Two clustering algorithms, agglomerative hierarchical and spectral clustering, are employed and compared for their performance. A small Type V CFRP tank is used as an experimental structure on this benchmark problem. In order to create realistic material damage, the tank is placed on an impact system multiple times where different damage magnitudes are created. After each new state and damage magnitude on the tank, vibrational experimental data are collected. Using the collected data, all the combinations of the mentioned metrics and algorithms are executed and properly compared to evaluate their accuracy.


2017 ◽  
Vol 41 (8) ◽  
pp. 579-599 ◽  
Author(s):  
Yunxiao Chen ◽  
Xiaoou Li ◽  
Jingchen Liu ◽  
Gongjun Xu ◽  
Zhiliang Ying

Large-scale assessments are supported by a large item pool. An important task in test development is to assign items into scales that measure different characteristics of individuals, and a popular approach is cluster analysis of items. Classical methods in cluster analysis, such as the hierarchical clustering, K-means method, and latent-class analysis, often induce a high computational overhead and have difficulty handling missing data, especially in the presence of high-dimensional responses. In this article, the authors propose a spectral clustering algorithm for exploratory item cluster analysis. The method is computationally efficient, effective for data with missing or incomplete responses, easy to implement, and often outperforms traditional clustering algorithms in the context of high dimensionality. The spectral clustering algorithm is based on graph theory, a branch of mathematics that studies the properties of graphs. The algorithm first constructs a graph of items, characterizing the similarity structure among items. It then extracts item clusters based on the graphical structure, grouping similar items together. The proposed method is evaluated through simulations and an application to the revised Eysenck Personality Questionnaire.


2013 ◽  
Vol 765-767 ◽  
pp. 580-584
Author(s):  
Yu Yang ◽  
Cheng Gui Zhao

Spectral clustering algorithms inevitable exist computational time and memory use problems for large-scale spectral clustering, owing to compute-intensive and data-intensive. We analyse the time complexity of constructing similarity matrix, doing eigendecomposition and performing k-means and exploiting SPMD parallel structure supported by MATLAB Parallel Computing Toolbox (PCT) to decrease eigendecomposition computational time. We propose using MATLAB Distributed Computing Server to parallel construct similarity matrix, whilst using t-nearest neighbors approach to reduce memory use. Ultimately, we present clustering time, clustering quality and clustering accuracy in the experiments.


2019 ◽  
Vol 30 (08) ◽  
pp. 1950062
Author(s):  
Ping Guo ◽  
Wenjie Jiang ◽  
Yuchi Liu

Membrane computing, also known as P system, is a distributed and parallel computation framework models. Hierarchical clustering is one of the most basic and widely applied clustering algorithms among all clustering algorithms. In this paper, the combination of membrane computing and hierarchical clustering algorithm is studied. A cell-like hierarchical clustering P system with priority evolution rules and promoters is designed by using the maximum parallelism of membrane computing. The feasibility and effectiveness of the designed P system are verified by the examples.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 370
Author(s):  
Shuangsheng Wu ◽  
Jie Lin ◽  
Zhenyu Zhang ◽  
Yushu Yang

The fuzzy clustering algorithm has become a research hotspot in many fields because of its better clustering effect and data expression ability. However, little research focuses on the clustering of hesitant fuzzy linguistic term sets (HFLTSs). To fill in the research gaps, we extend the data type of clustering to hesitant fuzzy linguistic information. A kind of hesitant fuzzy linguistic agglomerative hierarchical clustering algorithm is proposed. Furthermore, we propose a hesitant fuzzy linguistic Boole matrix clustering algorithm and compare the two clustering algorithms. The proposed clustering algorithms are applied in the field of judicial execution, which provides decision support for the executive judge to determine the focus of the investigation and the control. A clustering example verifies the clustering algorithm’s effectiveness in the context of hesitant fuzzy linguistic decision information.


Sign in / Sign up

Export Citation Format

Share Document