Synthesis of Memristive Structures Based on Composite Oxides with Agglomerates of Nanoparticles

2021 ◽  
Vol 9 (4) ◽  
pp. 200
Author(s):  
Andrey I. Vlasov ◽  
Ivan V. Gudoshnikov ◽  
Vladimir P. Zhalnin ◽  
Aksultan T. Kadyr ◽  
Vadim A. Shaknov ◽  
...  
Keyword(s):  
2019 ◽  
Author(s):  
Katsutoshi Sato ◽  
Shin-ichiro Miyahara ◽  
Yuta Ogura ◽  
Kotoko Tsujimaru ◽  
Yuichiro Wada ◽  
...  

<p>To mitigate global problems related to energy and global warming, it is helpful to develop an ammonia synthesis process using catalysts that are highly active under mild conditions. Here we show that the ammonia synthesis activity of Ru/Ba/LaCeO<i><sub>x</sub></i> pre-reduced at 700 °C is the highest reported among oxide-supported Ru catalysts. Our results indicate that low crystalline oxygen-deficient composite oxides, which include Ba<sup>2+</sup>, Ce<sup>3+</sup> and La<sup>3+</sup>, with strong electron-donating ability, accumulate on Ru particles and thus promote N≡N bond cleavage, which is the rate determining step for ammonia synthesis.</p>


2019 ◽  
Author(s):  
Katsutoshi Sato ◽  
Shin-ichiro Miyahara ◽  
Yuta Ogura ◽  
Kotoko Tsujimaru ◽  
Yuichiro Wada ◽  
...  

<p>To mitigate global problems related to energy and global warming, it is helpful to develop an ammonia synthesis process using catalysts that are highly active under mild conditions. Here we show that the ammonia synthesis activity of Ru/Ba/LaCeO<i><sub>x</sub></i> pre-reduced at 700 °C is the highest reported among oxide-supported Ru catalysts. Our results indicate that low crystalline oxygen-deficient composite oxides, which include Ba<sup>2+</sup>, Ce<sup>3+</sup> and La<sup>3+</sup>, with strong electron-donating ability, accumulate on Ru particles and thus promote N≡N bond cleavage, which is the rate determining step for ammonia synthesis.</p>


2004 ◽  
Vol 93-95 ◽  
pp. 595-601 ◽  
Author(s):  
Guoran Li ◽  
Wei Li ◽  
Minghui Zhang ◽  
Keyi Tao

2006 ◽  
Vol 66 (3-4) ◽  
pp. 217-227 ◽  
Author(s):  
L.F. Liotta ◽  
G. Di Carlo ◽  
G. Pantaleo ◽  
A.M. Venezia ◽  
G. Deganello

2020 ◽  
Vol 9 (1) ◽  
pp. 191-202
Author(s):  
Jian Wang ◽  
Chao Zhu ◽  
Baowei Li ◽  
Zhijun Gong ◽  
Zhaolei Meng ◽  
...  

AbstractTo research the roles of rare earth minerals in denitrification via the NH3-SCR, a mixture was made by certain ratio of rare earth concentrates and rare earth tailings, then treated by microwave roasting, and acids and bases to form a denitrification catalyst. The mineral phase structure and surface morphology of the catalyst were characterized by XRD, BET, SEM and EDS. The surface properties of the catalyst were tested by TPD and XPS methods, and the denitrification activity of the catalyst was evaluated in a denitrification reactor. The results showed that the denitrification efficiency increased up to 82% with complete processing. XRD, BET, SEM, and EDS spectrum analysis stated that the treated minerals contained cerium oxides and Fe−Ce composite oxides. The surface of the modified minerals became rough and porous, the surface area increased, and the surface-active sites were exposed. The results of NH3-TPD and NO-TPD showed that the catalyst surface could gradually adsorb more NH3 and NO after each step. XPS analysis indicated that there were more Ce3+, Fe2+, and lattice oxygen in rare earth minerals catalyst after each treatment step.


2015 ◽  
Vol 22 (03) ◽  
pp. 1550035 ◽  
Author(s):  
WEI-YUAN YU ◽  
SEN-HUI LIU ◽  
XIN-YA LIU ◽  
JIA-LIN SHAO ◽  
MIN-PEN LIU

In this study, Sn - Ag - Ti ternary alloy has been used as the active solder to braze pure aluminum and graphite in atmospheric conditions using ultrasonic vibration as an aid. The authors studied the formation, composition and decomposition temperature of the surface oxides of the active solder under atmospheric conditions. In addition, the wettability of Sn -5 Ag -8 Ti active solder on the surface of pure aluminum and graphite has also been studied. The results showed that the major components presented in the surface oxides formed on the Sn -5 Ag -8 Ti active solder under ambient conditions are TiO , TiO 2, Ti 2 O 3, Ti 3 O 5 and SnO 2. Apart from AgO and Ag 2 O 2, which can be decomposed at the brazing temperature (773 K), other oxides will not be decomposed. The oxide layer comprises composite oxides and it forms a compact layer with a certain thickness to enclose the melted solder, which will prevent the liquid solder from wetting the base metals at the brazing temperature. After ultrasonic vibration, the oxide layer was destroyed and the liquid solder was able to wet and spread out around the base materials. Furthermore, better wettability of the active solder was observed on the surface of graphite and pure aluminum at the brazing temperature of 773–823 K using ultrasonic waves. The ultrasonic wave acts as the dominant driving factor which promotes the wetting and spreading of the liquid solder on the surface of graphite and aluminum to achieve a stable and reliable brazed joint.


Sign in / Sign up

Export Citation Format

Share Document