denitrification activity
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 27)

H-INDEX

31
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Thomas D. Glaze ◽  
Dirk V. Erler ◽  
Henri. M. P. Siljanen

AbstractTropical scleractinian corals support a diverse assemblage of microbial symbionts. This ‘microbiome’ possesses the requisite functional diversity to conduct a range of nitrogen (N) transformations including denitrification, nitrification, nitrogen fixation and dissimilatory nitrate reduction to ammonium (DNRA). Very little direct evidence has been presented to date verifying that these processes are active within tropical corals. Here we use a combination of stable isotope techniques, nutrient uptake calculations and captured metagenomics to quantify rates of nitrogen cycling processes in a selection of tropical scleractinian corals. Denitrification activity was detected in all species, albeit with very low rates, signifying limited importance in holobiont N removal. Relatively greater nitrogen fixation activity confirms that corals are net N importers to reef systems. Low net nitrification activity suggests limited N regeneration capacity; however substantial gross nitrification activity may be concealed through nitrate consumption. Based on nrfA gene abundance and measured inorganic N fluxes, we calculated significant DNRA activity in the studied corals, which has important implications for coral reef N cycling and warrants more targeted investigation. Through the quantification and characterisation of all relevant N-cycling processes, this study provides clarity on the subject of tropical coral-associated biogeochemical N-cycling.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yusuf C. El-Khaled ◽  
Florian Roth ◽  
Nils Rädecker ◽  
Arjen Tilstra ◽  
Denis B. Karcher ◽  
...  

AbstractCoral reefs experience phase shifts from coral- to algae-dominated benthic communities, which could affect the interplay between processes introducing and removing bioavailable nitrogen. However, the magnitude of such processes, i.e., dinitrogen (N2) fixation and denitrification levels, and their responses to phase shifts remain unknown in coral reefs. We assessed both processes for the dominant species of six benthic categories (hard corals, soft corals, turf algae, coral rubble, biogenic rock, and reef sands) accounting for > 98% of the benthic cover of a central Red Sea coral reef. Rates were extrapolated to the relative benthic cover of the studied organisms in co-occurring coral- and algae-dominated areas of the same reef. In general, benthic categories with high N2 fixation exhibited low denitrification activity. Extrapolated to the respective reef area, turf algae and coral rubble accounted for > 90% of overall N2 fixation, whereas corals contributed to more than half of reef denitrification. Total N2 fixation was twice as high in algae- compared to coral-dominated areas, whereas denitrification levels were similar. We conclude that algae-dominated reefs promote new nitrogen input through enhanced N2 fixation and comparatively low denitrification. The subsequent increased nitrogen availability could support net productivity, resulting in a positive feedback loop that increases the competitive advantage of algae over corals in reefs that experienced a phase shift.


2021 ◽  
Vol 12 ◽  
Author(s):  
Caroline Michel ◽  
Nicole Baran ◽  
Laurent André ◽  
Mickael Charron ◽  
Catherine Joulian

The impact of two pesticides (S-metolachlor and propiconazole) and their respective main metabolites (ESA-metolachlor and 1,2,4-triazole) on bacterial denitrification in groundwater was studied. For this, the denitrification activity and the bacterial diversity of a microbial community sampled from a nitrate-contaminated groundwater were monitored during 20 days in lab experiments in the presence or absence of pesticides or metabolites at 2 or 10 μg/L. The kinetics of nitrate reduction along with nitrite and N2O production all suggested that S-metolachlor had no or only little impact, whereas its metabolite ESA-metolachlor inhibited denitrification by 65% at 10 μg/L. Propiconazole and 1,2,4-triazole also inhibited denitrification at both concentrations, but to a lesser extent (29–38%) than ESA-metolachlor. When inhibition occurred, pesticides affected the reduction of nitrate into nitrite step. However, no significant differences were detected on the abundance of nitrate reductase narG and napA genes, suggesting an impact of pesticides/metabolites at the protein level rather than on denitrifying bacteria abundance. 16S rRNA gene Illumina sequencing indicated no major modification of bacterial diversity in the presence or absence of pesticides/metabolites, except for ESA-metolachlor and propiconazole at 10 μg/L that tended to increase or decrease Shannon and InvSimpson indices, respectively. General growth parameters suggested no impact of pesticides, except for propiconazole at 10 μg/L that partially inhibited acetate uptake and induced a decrease in microbial biomass. In conclusion, pesticides and metabolites can have side effects at environmental concentrations on microbial denitrification in groundwater and may thus affect ecosystem services based on microbial activities.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Steven Smriga ◽  
Davide Ciccarese ◽  
Andrew R. Babbin

AbstractHeterotrophic denitrification enables facultative anaerobes to continue growing even when limited by oxygen (O2) availability. Particles in particular provide physical matrices characterized by reduced O2 permeability even in well-oxygenated bulk conditions, creating microenvironments where microbial denitrifiers may proliferate. Whereas numerical particle models generally describe denitrification as a function of radius, here we provide evidence for heterogeneity of intraparticle denitrification activity due to local interactions within and among microcolonies. Pseudomonas aeruginosa cells and microcolonies act to metabolically shade each other, fostering anaerobic processes just microns from O2-saturated bulk water. Even within well-oxygenated fluid, suboxia and denitrification reproducibly developed and migrated along sharp 10 to 100 µm gradients, driven by the balance of oxidant diffusion and local respiration. Moreover, metabolic differentiation among densely packed cells is dictated by the diffusional supply of O2, leading to distinct bimodality in the distribution of nitrate and nitrite reductase expression. The initial seeding density controls the speed at which anoxia develops, and even particles seeded with few bacteria remain capable of becoming anoxic. Our empirical results capture the dynamics of denitrifier gene expression in direct association with O2 concentrations over microscale physical matrices, providing observations of the co-occurrence and spatial arrangement of aerobic and anaerobic processes.


2021 ◽  
Vol 83 (2) ◽  
Author(s):  
Beat Müller ◽  
Raoul Thoma ◽  
Kathrin B. L. Baumann ◽  
Cameron M. Callbeck ◽  
Carsten J. Schubert

AbstractFreshwater lakes are essential hotspots for the removal of excessive anthropogenic nitrogen (N) loads transported from the land to coastal oceans. The biogeochemical processes responsible for N removal, the corresponding transformation rates and overall removal efficiencies differ between lakes, however, it is unclear what the main controlling factors are. Here, we investigated the factors that moderate the rates of N removal under contrasting trophic states in two lakes located in central Switzerland. In the eutrophic Lake Baldegg and the oligotrophic Lake Sarnen, we specifically examined seasonal sediment porewater chemistry, organic matter sedimentation rates, as well as 33-year of historic water column data. We find that the eutrophic Lake Baldegg, which contributed to the removal of 20 ± 6.6 gN m−2 year−1, effectively removed two-thirds of the total areal N load. In stark contrast, the more oligotrophic Lake Sarnen contributed to 3.2 ± 4.2 gN m−2 year−1, and had removed only one-third of the areal N load. The historic dataset of the eutrophic lake revealed a close linkage between annual loads of dissolved N (DN) and removal rates (NRR = 0.63 × DN load) and a significant correlation of the concentration of bottom water nitrate and removal rates. We further show that the seasonal increase in N removal rates of the eutrophic lake correlated significantly with seasonal oxygen fluxes measured across the water–sediment interface (R2 = 0.75). We suggest that increasing oxygen enhances sediment mineralization and stimulates nitrification, indirectly enhancing denitrification activity.


Sign in / Sign up

Export Citation Format

Share Document