Modified Low Energy Adaptive Clustering Hierarchy Protocol for Efficient Energy Consumption in Wireless Sensor Networks

2014 ◽  
Vol 9 (11) ◽  
pp. 1904 ◽  
Author(s):  
Mohammed Joda Usman ◽  
Zhang Xing ◽  
Haruna Chiroma ◽  
Abdulsalam Ya’u Gital ◽  
Adamu I. Abubakar ◽  
...  
2018 ◽  
Vol 14 (3) ◽  
pp. 155014771876464 ◽  
Author(s):  
Adem Fanos Jemal ◽  
Redwan Hassen Hussen ◽  
Do-Yun Kim ◽  
Zhetao Li ◽  
Tingrui Pei ◽  
...  

Clustering is vital for lengthening the lives of resource-constrained wireless sensor nodes. In this work, we propose a cluster-based energy-efficient router placement scheme for wireless sensor networks, where the K-means algorithm is used to select the initial cluster headers and then a cluster header with sufficient battery energy is selected within each cluster. The performance of the proposed scheme was evaluated in terms of the energy consumption, end-to-end delay, and packet loss. Our simulation results using the OPNET simulator revealed that the energy consumption of our proposed scheme was better than that of the low-energy adaptive clustering hierarchy, which is known to be an energy-efficient clustering mechanism. Furthermore, our scheme outperformed low-energy adaptive clustering hierarchy in terms of the end-to-end delay, throughput, and packet loss rate.


2014 ◽  
Vol 665 ◽  
pp. 745-750
Author(s):  
Qi Gong Chen ◽  
Yong Zhi Wang ◽  
Li Sheng Wei ◽  
Wen Gen Gao

Energy consumption is a hot issue in WSNs (Wireless Sensor Networks). In this paper, we present an improved clustering algorithm. By changing the order of traditional WSNs clustering algorithm, this algorithm uses k-means clustering firstly base on optimal number of cluster head is determined; Then selects cluster head by an improved LEACH (Low Energy Adaptive Clustering Hierarchy) algorithm; Finally, Our experimental results demonstrate that this approach can reduces energy consumption and increases the lifetime of the WSNs.


2016 ◽  
Vol 12 (07) ◽  
pp. 4 ◽  
Author(s):  
Song Ling ◽  
Qi Dong Yang

For the requirement of low energy consumption and high privacy-preserving in wireless sensor networks of range query, we propose a low energy consumption secure and verifiable range query protocol called SPRQ.SPRQ uses a novel prime aggregation to protect the privacy of the query data; We further propose an idea of the and value chain whereby data items collected by each sensor will be linked with each other just like a chain.The Sink verifies the integrity of query results by checking whether the data chain of each sensor is complete or not. The results of simulation experiments prove that prime aggregation can effectively reduce the amount of increased data in the prefix encoding process,so,network energy consumption is lower compared with other secure range query protocols.


Wireless Sensor Networks (WSN) consists of a large amount of nodes connected in a self-directed manner. The most important problems in WSN are Energy, Routing, Security, etc., price of the sensor nodes and renovation of these networks is reasonable. The sensor node tools included a radio transceiver with an antenna and an energy source, usually a battery. WSN compute the environmental conditions such as temperature, sound, pollution levels, etc., WSN built the network with the help of nodes. A sensor community consists of many detection stations known as sensor nodes, every of which is small, light-weight and portable. Nodes are linked separately. Each node is linked into the sensors. In recent years WSN has grow to be an essential function in real world. The data’s are sent from end to end multiple nodes and gateways, the data’s are connected to other networks such as wireless Ethernet. MGEAR is the existing mechanism. It works with the routing and energy consumption. The principal problem of this work is choosing cluster head, and the selection is based on base station, so the manner is consumes energy. In this paper, develop the novel based hybrid protocol Low Energy Aware Gateway (LEAG). We used Zigbee techniques to reduce energy consumption and routing. Gateway is used to minimize the energy consumption and data is send to the base station. Nodes are used to transmit the data into the cluster head, it transmit the data into gateway and gateway compress and aggregate the data then sent to the base station. Simulation result shows our proposed mechanism consumes less energy, increased throughput, packet delivery ration and secure routing when compared to existing mechanism (MGEAR).


2012 ◽  
Vol 463-464 ◽  
pp. 261-265
Author(s):  
Fei Hui ◽  
Xiao Le Wang ◽  
Xin Shi

In this paper, hazardous materials transportation monitoring system is designed, implemented, and tested using Wireless Sensor Networks (WSNs). According to energy consumption and response time during clustering of Wireless Sensor Networks LEACH (Low Energy Adaptive Clustering Hierarchy) routing protocol, we proposed STATIC-LEACH routing protocol based on static clustering, it can effectively reduce energy consumption of the wireless sensor nodes and reduce network latency of cluster. With WSN and GSM/GPRS, low cost and easy deployment remote monitoring is possible without interfering with the operation of the transportation.


Sign in / Sign up

Export Citation Format

Share Document