scholarly journals Influence of Microstructural Changes on Residual Stress Characteristics and Macro-Hardness of Submerged Arc Welded P-91 Steel Plates

2021 ◽  
Vol 26 ◽  
Author(s):  
Raja Chakrabarti ◽  
Joydeep Roy ◽  
Pankaj Biswas ◽  
Subhas Chandra Saha
2011 ◽  
Vol 681 ◽  
pp. 364-369
Author(s):  
Maria José Marques ◽  
António Castanhola Batista ◽  
Joana Rebelo-Kornmeier ◽  
Michael Hofmann ◽  
Joao P. Nobre ◽  
...  

The influence of the heat treatment on the residual stress fields of weld cladded samples is discussed in this paper. The samples were elaborated from carbon steel plates, cladded in one of the faces with stainless steel filler metals by submerged arc welding. After the cladding process some of the samples were submitted to heat treatments with different parameters: one at 620° C for a holding time of 1 hour and the other at 540° C for a period of ten hours. The in‑depth residual stress profiles were determined by neutron diffraction. The results shown that the sample treated to 620 °C, presented the highest residual stress relaxation. The corresponding heat treatment has the industrial benefit to be shorter than the other heat treatment.


2020 ◽  
Vol 62 (12) ◽  
pp. 1192-1198
Author(s):  
Ali Kaya Gur ◽  
Semih Taskaya ◽  
Subramaniam Shankar ◽  
Thangamuthu Mohanraj

Abstract Ramor 500 steel plates are used as a ballistic material due to their greater hardness and strength properties. This steel can be produced with a 2-30 mm thickness sheet which may attain 505-590 HV hardness. In the present work, Ramor 500 steel pairs are joined using a submerged arc welding (SAW) process and taking various parameters into consideration. An austenitic additional wire is used for the welding process which contains Cr, Ni, and Mn. The source model prototype was developed using ANSYS software and considering a time-dependent three dimensional thermal model with source cooling. The highest tensile stress voltage value was determined in the sample applying a constant current of 250 A, 25 V and 30 cm × min-1welding speed. It was observed that the welding seam width increases as welding tension grows and that welding height and depth increase and decrease more or less in tandem. A ANSYS thermal cooling analysis revealed that welding tension grows with heat transfer which increases 15 mm from the main center of the welding area.


2017 ◽  
Vol 1143 ◽  
pp. 52-57
Author(s):  
Elena Scutelnicu ◽  
Carmen Catalina Rusu ◽  
Bogdan Georgescu ◽  
Octavian Mircea ◽  
Melat Bormambet

The paper addresses the development of advanced welding technologies with two and three solid wires for joining of HSLA API-5l X70 (High-strength low-alloy) steel plates with thickness of 19.1 mm. The experiments were performed using a multi-wire Submerged Arc Welding (SAW) system that was developed for welding of steels with solid, tubular and cold wires, in different combinations. The main goal of the research was to assess the mechanical performances of the welded joints achieved by multi-wire SAW technology and then to compare them with the single wire variant, as reference system. The welded samples were firstly subjected to NDT control by examinations with liquid penetrant, magnetic particle, ultrasonic and gamma radiation, with the aim of detecting the specimens with flaws and afterwards to reconsider and redesign the corresponding Welding Procedure Specifications (WPS). The defect-free welded samples were subjected to tensile, Charpy V-notch impact and bending testing in order to analyse and report the mechanical behaviour of API-5l X70 steel during multi-wire SAW process. The experimental results were processed and comparatively discussed. The challenge of the investigation was to find the appropriate welding technology which responds simultaneously to the criteria of quality and productivity. Further research on metallurgical behaviour of the base material will be developed, in order to conclude the complete image of the SAW process effects and to understand how the multi-wire technologies affect the mechanical and metallurgical characteristics of the API-5L X70 steel used in pipelines fabrication.


2014 ◽  
Vol 996 ◽  
pp. 755-760 ◽  
Author(s):  
Bilal Ahmad ◽  
Michael E. Fitzpatrick

Fatigue cracks mostly initiate at areas subjected to high tensile residual stress and stress concentration. Ultrasonic peening is a mechanical method to increase fatigue life by imparting compressive residual stress. In this study residual stresses are characterized in fillet welded ship structural steel plates with longitudinal attachments. As-welded, ultrasonically peened, and specimens peened then subjected to accelerated corrosion testing were measured. Residual stress characterization was performed by the contour method and neutron diffraction.


2018 ◽  
Vol 941 ◽  
pp. 269-273
Author(s):  
Constant Ramard ◽  
Denis Carron ◽  
Philippe Pilvin ◽  
Florent Bridier

Multipass arc welding is commonly used for thick plates assemblies in shipbuilding. Sever thermal cycles induced by the process generate inhomogeneous plastic deformation and residual stresses. Metallurgical transformations contribute at each pass to the residual stress evolution. Since residual stresses can be detrimental to the performance of the welded product, their estimation is essential and numerical modelling is useful to predict them. Finite element analysis of multipass welding of a high strength steel is achieved with a special emphasis on mechanical and metallurgical effects on residual stress. A welding mock-up was specially designed for experimental measurements of in-depth residual stresses using contour method and deep hole drilling and to provide a simplified case for simulation. The computed results are discussed through a comparison with experimental measurements.


Sign in / Sign up

Export Citation Format

Share Document