scholarly journals THICKNESS AND CROSS-SECTIONAL AREA OF THE ACHILLES TENDON IN MARATHON RUNNERS: A CROSS-SECTIONAL STUDY

2020 ◽  
Vol 26 (5) ◽  
pp. 391-395
Author(s):  
Juan José Salinero ◽  
Beatriz Lara ◽  
Jorge Gutierrez-Hellin ◽  
César Gallo-Salazar ◽  
Francisco Areces ◽  
...  

ABSTRACT Introduction: This study aimed to measure thickness and cross-sectional area of the Achilles tendon (AT), and the range of motion of the ankle joint in dorsiflexion of amateur marathon runners compared to non-active people. Objectives: To analyze the relationship between cross-sectional area and thickness of the Achilles tendon in marathon runners and age, anthropometric characteristics (height and body mass), training habits, running experience, marathon performance, and range of motion in the ankle joint. Methods: Achilles tendon thickness and cross-sectional area were measured using ultrasound images of the left leg in 97 male amateur marathon runners (age 42.0 ± 9.6 years; height 175 ± 6 cm; and body mass 73.7 ± 8.6 kg), and 47 controls (39.9 ± 11.6 years; 176 ± 7 cm; 79.6 ± 16.1 kg). Results: Achilles tendon thickness (4.81 ± 0.77 vs. 4.60 ± 0.66 mm; p = 0.01) and cross-sectional area (60.41 ± 14.36 vs. 53.62 ± 9.90 mm2; p < 0.01) were greater in the marathon runners than in non-active people. Achilles tendon thickness has been correlated, in a weak but significant manner, with years of running experience. Moreover, marathon runners showed increased ankle range of motion (81.81 ± 6.93 vs. 77.86 ± 7.27 grades; p<0.01). Conclusion: Male amateur marathon runners have hypertrophy of the Achilles tendon compared to non-active people, and this enlargement is mediated by running experience. In addition, range of motion in ankle dorsiflexion is favored by marathon training. Level of evidence III; Retrospective study.

2009 ◽  
Vol 106 (4) ◽  
pp. 1332-1337 ◽  
Author(s):  
T. Finni ◽  
V. Kovanen ◽  
P. H. A. Ronkainen ◽  
E. Pöllänen ◽  
G. R. Bashford ◽  
...  

Estrogen concentration has been suggested to play a role in tendon abnormalities and injury. In physically active postmenopausal women, hormone replacement therapy (HRT) has been suggested to decrease tendon diameter. We hypothesized that HRT use and physical activity are associated with Achilles tendon size and tissue structure. The study applied cotwin analysis of fourteen 54- to 62-yr-old identical female twin pairs with current discordance for HRT use for an average of 7 yr. Achilles tendon thickness and cross-sectional areas were determined by ultrasonography, and tendon structural organization was analyzed from the images using linear discriminant analysis (LDA). Maximal voluntary and twitch torques from plantar flexor muscles were measured. Serum levels of estradiol, estrone, testosterone, and sex hormone binding globulin were analyzed. Total daily metabolic equivalent score (MET-h/day) was calculated from physical activity questionnaires. Results showed that, in five physically active (MET > 4) pairs, the cotwins receiving HRT had greater estradiol level ( P = 0.043) and smaller tendon cross-sectional area than their sisters (63 vs. 71 mm2, P = 0.043). Among all pairs, Achilles tendon thickness and cross-sectional area did not significantly differ between HRT using and nonusing twin sisters. Intrapair correlation for Achilles tendon thickness was high, despite HRT use discordance ( r = 0.84, P < 0.001). LDA distinguished different tendon structure only from two of six examined twin pairs who had a similar level of physical activity. In conclusion, the effect of HRT on Achilles tendon characteristics independent of genetic confounding may be present only in the presence of sufficient physical activity. In physically active twin pairs, the higher level of estrogen seems to be associated with smaller tendon size.


2018 ◽  
Vol 6 (1) ◽  
Author(s):  
Lailatul Muqmiroh ◽  
Safinah Fajarini Yusfadhiyah ◽  
Paulus Rahardjo

Background : Ultrasonography (US) is the cheaper and non invasive modality to determine Achilles tendon. Prone position is the standart position of Achilles tendon US. However, it is a discomfort for an uncooperative patient and a difficult technique too. The erect position is an alternative technique of Achilles tendon US. The goal of this study is to compare the erection as an alternative position with prone as a standart position.Material and Methode: The patient who had an injury or any inflamation process of Achilles tendon were excluded. The patient underwent two positions of Achilles tendon US, 900 and dorsoflexi. Longitudinal axis measured tendon thickness and a transversal axis which covered a cross-sectional area of the tendon.Result: From all the 21 patients coming, 13 patients were males (61,9%), and eight patients were females (38,1%). The mean of tendon thickness and cross-sectional area in 900 prone positions were 4,24±0,24 mm, 30,08±2,86 mm, respectively. The mean of tendon thickness and cross-sectional area in 900 erect positions were 4,27±0,23 mm, 31,36±2,19 mm, respectively. There was no anisotropy effect during longitudinal axis examination. Conclusion: We found that there were no significant differences between a prone and erect position (p<0.05). The erect postion could be an alternative position, uncooperative patient in particular, without reducing the diagnostic value. Keywords: Achilles tendon the US, erect position, prone position, tendon thickness, cross-sectional area


1994 ◽  
Vol 35 (6) ◽  
pp. 560-563 ◽  
Author(s):  
M. Kallinen ◽  
H. Suominen

Ultrasonography was performed on the Achilles tendon of the dominant limb of 18 male elderly athletes and 11 sedentary men, aged 70 to 80 years. The tendons were examined with a real-time linear array scanner using a 7.5 MHz transducer. Both longitudinal and transverse images were taken. The mean width of the Achilles tendon was significantly larger in the athletes than in the control subjects. The tendon thickness and cross-sectional area did not differ significantly between the groups, but the figures may indicate a tendency for larger cross-sectional area in the athletes. The results suggest tendon hypertrophy following long-term training.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Jonathan M. G. Perry ◽  
Adam Hartstone-Rose ◽  
Rachel L. Logan

We reconstructed the jaw adductor resultant in 34 primate species using new data on muscle physiological cross-sectional area (PCSA) and data on skull landmarks. Based on predictions by Greaves, the resultant should (1) cross the jaw at 30% of its length, (2) lie directly posterior to the last molar, and (3) incline more anteriorly in primates that need not resist large anteriorly-directed forces. We found that the resultant lies significantly posterior to its predicted location, is significantly posterior to the last molar, and is significantly more anteriorly inclined in folivores than in frugivores. Perhaps primates emphasize avoiding temporomandibular joint distraction and/or wide gapes at the expense of bite force. Our exploration of trends in the data revealed that estimated bite force varies with body mass (but not diet) and is significantly greater in strepsirrhines than in anthropoids. This might be related to greater contribution from the balancing-side jaw adductors in anthropoids.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Qianru Li ◽  
Qi Zhang ◽  
Yehua Cai ◽  
Yinghui Hua

Purpose. To evaluate differences of Achilles tendon (AT) hardness and morphology between asymptomatic tendons in patients with acute AT ruptures on the contralateral side and asymptomatic tendons in healthy people by using computer-assisted quantification on axial-strain sonoelastography (ASE). Methods. The study consisted of 33 asymptomatic tendons in 33 patients (study group) and 34 tendons in 19 healthy volunteers (control group). All the tendons were examined by both ASE and conventional ultrasound. Computer-assisted quantification on ASE was applied to extract hardness variables, including the mean (Hmean), 20th percentile (H20), median (H50) and skewness (Hsk) of the hardness within tendon, and the ratio of the mean hardness within tendon to that outside tendon (Hratio) and three morphological variables: the thickness (THK), cross-sectional area, and eccentricity (ECC) of tendons. Results. The Hmean, Hsk, H20, H50, and Hratio in the proximal third of the tendon body in study group were significantly smaller than those in control group (Hmean: 0.43±0.09 vs 0.50±0.07, p=0.001; Hsk: -0.53±0.51 vs -1.09±0.51, p<0.001; H20: 0.31±0.10 vs 0.40±0.10, p=0.001; H50: 0.45±0.10 vs 0.53±0.08, p<0.001; Hratio: 1.01±0.25 vs 1.20±0.23, p=0.003). The THK and cross-sectional area of tendons in the study group were larger than those in the control group (p<0.05). Conclusions. As a quantitative objective method, the computer-assisted ASE reveals that the asymptomatic ATs contralateral to acute rupture are softer than those of healthy control group at the proximal third and the asymptomatic tendons in people with rupture history are thicker, larger, and rounder than those of normal volunteers especially at the middle and distal thirds of AT body.


Author(s):  
Xini Zhang ◽  
Liqin Deng ◽  
Songlin Xiao ◽  
Lu Li ◽  
Weijie Fu

Background: Patients with Achilles tendon (AT) injuries are often engaged in sedentary work because of decreasing tendon vascularisation. Furthermore, men are more likely to be exposed to AT tendinosis or ruptures. These conditions are related to the morphological and mechanical properties of AT, but the mechanism remains unclear. This study aimed to investigate the effects of sex on the morphological and mechanical properties of the AT in inactive individuals. Methods: In total, 30 inactive healthy participants (15 male participants and 15 female participants) were recruited. The AT morphological properties (cross-sectional area, thickness, and length) were captured by using an ultrasound device. The AT force–elongation characteristics were determined during isometric plantarflexion with the ultrasonic videos. The AT stiffness was determined at 50%–100% maximum voluntary contraction force. The AT strain, stress, and hysteresis were calculated. Results: Male participants had 15% longer AT length, 31% larger AT cross-sectional area and 21% thicker AT than female participants (p < 0.05). The plantarflexion torque, peak AT force, peak AT stress, and AT stiffness were significantly greater in male participants than in female participants (p < 0.05). However, no significant sex-specific differences were observed in peak AT strain and hysteresis (p > 0.05). Conclusions: In physically inactive adults, the morphological properties of AT were superior in men but were exposed to higher stress conditions. Moreover, no significant sex-specific differences were observed in peak AT strain and hysteresis, indicating that the AT of males did not store and return elastic energy more efficiently than that of females. Thus, the mechanical properties of the AT should be maintained and/or improved through physical exercise.


2014 ◽  
Author(s):  
Luis P Lamas ◽  
Russell P Main ◽  
John R. Hutchinson

Emus (Dromaius novaehollandiae) are exclusively terrestrial, bipedal and cursorial ratites with some similar biomechanical characteristics to humans. Their growth rates are impressive as their body mass increases eighty-fold from hatching to adulthood whilst maintaining the same mode of locomotion throughout life. These ontogenetic characteristics stimulate biomechanical questions about the strategies that allow emus to cope with their rapid growth and locomotion, which can be partly addressed via scaling (allometric) analysis of morphology. In this study we have collected pelvic limb anatomical data (muscle architecture, tendon length, tendon mass and bone lengths) and calculated muscle physiological cross sectional area (PCSA) and average tendon cross sectional area from emus across three ontogenetic stages (n=17, body masses from 3.6 to 42 kg). The data were analysed by reduced major axis regression to determine how these biomechanically relevant aspects of morphology scaled with body mass. Muscle mass and PCSA showed a marked trend towards positive allometry (26 and 27 out of 34 muscles respectively) and fascicle length showed a more mixed scaling pattern. The long tendons of the main digital flexors scaled with positive allometry for all characteristics whilst other tendons demonstrated a less clear scaling pattern. Finally, the two longer bones of the limb (tibiotarsus and tarsometatarsus) also exhibited positive allometry for length and the two others (femur and first phalanx of digit III) had trends towards isometry. These results indicate that emus experience a relative increase in their muscle force-generating capacities, as well as potentially increasing the force-sustaining capacities of their tendons, as they grow. Furthermore, we have clarified anatomical descriptions and provided illustrations of the pelvic limb muscle-tendon units in emus.


Author(s):  
Luis P Lamas ◽  
Russell P Main ◽  
John R. Hutchinson

Emus (Dromaius novaehollandiae) are exclusively terrestrial, bipedal and cursorial ratites with some similar biomechanical characteristics to humans. Their growth rates are impressive as their body mass increases eighty-fold from hatching to adulthood whilst maintaining the same mode of locomotion throughout life. These ontogenetic characteristics stimulate biomechanical questions about the strategies that allow emus to cope with their rapid growth and locomotion, which can be partly addressed via scaling (allometric) analysis of morphology. In this study we have collected pelvic limb anatomical data (muscle architecture, tendon length, tendon mass and bone lengths) and calculated muscle physiological cross sectional area (PCSA) and average tendon cross sectional area from emus across three ontogenetic stages (n=17, body masses from 3.6 to 42 kg). The data were analysed by reduced major axis regression to determine how these biomechanically relevant aspects of morphology scaled with body mass. Muscle mass and PCSA showed a marked trend towards positive allometry (26 and 27 out of 34 muscles respectively) and fascicle length showed a more mixed scaling pattern. The long tendons of the main digital flexors scaled with positive allometry for all characteristics whilst other tendons demonstrated a less clear scaling pattern. Finally, the two longer bones of the limb (tibiotarsus and tarsometatarsus) also exhibited positive allometry for length and the two others (femur and first phalanx of digit III) had trends towards isometry. These results indicate that emus experience a relative increase in their muscle force-generating capacities, as well as potentially increasing the force-sustaining capacities of their tendons, as they grow. Furthermore, we have clarified anatomical descriptions and provided illustrations of the pelvic limb muscle-tendon units in emus.


1997 ◽  
Vol 272 (1) ◽  
pp. R34-R42 ◽  
Author(s):  
J. J. Widrick ◽  
J. G. Romatowski ◽  
M. Karhanek ◽  
R. H. Fitts

It is well known that skeletal muscle intrinsic maximal shortening velocity is inversely related to species body mass. However, there is uncertainty regarding the relationship between the contractile properties of muscle fibers obtained from commonly studied laboratory animals and those obtained from humans. In this study we determined the contractile properties of single chemically skinned fibers prepared from rat, rhesus monkey, and human soleus and gastrocnemius muscle samples under identical experimental conditions. All fibers used for analysis expressed type I myosin heavy chain as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Allometric coefficients for type I fibers from each muscle indicated that there was little change in peak tension (force/fiber cross-sectional area) across species. In contrast, both soleus and gastrocnemius type I fiber maximal unloaded shortening velocity (Vo), the y-intercept of the force-velocity relationship (Vmax), peak power per unit fiber length, and peak power normalized for fiber length and cross-sectional area were all inversely related to species body mass. The present allometric coefficients for soleus fiber Vo (-0.18) and Vmax (-0.11) are in good agreement with published values for soleus fibers obtained from common laboratory and domesticated mammals. Taken together, these observations suggest that the Vo of slow fibers from quadrupeds and humans scale similarly and can be described by the same quantitative relationships. These findings have implications in the design and interpretation of experiments, especially those that use small laboratory mammals as a model of human muscle function.


Sign in / Sign up

Export Citation Format

Share Document