scholarly journals EFFECTS OF PUERARIA LOBATA COMBINED WITH HIGH-INTENSITY INTERMITTENT TRAINING ON SKELETAL MUSCLE QUALITY AND GENE EXPRESSION

2021 ◽  
Vol 27 (spe2) ◽  
pp. 50-53
Author(s):  
Yun Zhao ◽  
Mingang Guo

ABSTRACT Extraction of effective components from Pueraria lobata has important value for skeletal muscle quality and gene expression. The improvement effect of traditional high-intensity intermittent training on skeletal muscle has not been obvious, and it is difficult to guarantee the properties of some volatiles. Based on this, this paper analyzes the effect of high-intensity intermittent training on skeletal muscle quality and gene expression in Pueraria lobata. Based on a brief summary of extraction of Pueraria lobata, status of research on the pharmaceutical components of Pueraria lobata was summarized. Different specimens of Pueraria lobata were selected as research objects, and the process of high-intensity intermittent training was designed. High-intensity intermittent training, solvent extraction and water solvent extraction were combined together to design the fixed-bed continuous extraction scheme. According to the influence of Pueraria lobata on skeletal muscle quality, the influence of intermittent training on skeletal muscle quality was analyzed. The extraction results showed that Pueraria lobata combined with high-intensity intermittent training can effectively improve the content of skeletal muscle and ensure the effective expression of skeletal muscle gene.

2004 ◽  
Vol 18 (3) ◽  
pp. 522-524 ◽  
Author(s):  
Takeshi Nikawa ◽  
Kazumi Ishidoh ◽  
Katsuya Hirasaka ◽  
Ibuki Ishihara ◽  
Madoka Ikemoto ◽  
...  

2010 ◽  
Vol 88 (4) ◽  
pp. 1349-1357 ◽  
Author(s):  
D. K. Walker ◽  
E. C. Titgemeyer ◽  
T. J. Baxa ◽  
K. Y. Chung ◽  
D. E. Johnson ◽  
...  

BMC Genetics ◽  
2018 ◽  
Vol 19 (1) ◽  
Author(s):  
I-Hsuan Lin ◽  
Junn-Liang Chang ◽  
Kate Hua ◽  
Wan-Chen Huang ◽  
Ming-Ta Hsu ◽  
...  

Author(s):  
Ferdinand von Walden ◽  
Rodrigo Fernandez-Gonzalo ◽  
Jessica Maria Norrbom ◽  
Eric B. Emanuelsson ◽  
Vandre C. Figueiredo ◽  
...  

Mitochondrial derived peptides (MDPs) humanin (HN) and mitochondrial open reading frame of the 12S rRNA-c (MOTS-c) are involved in cell survival, suppression of apoptosis and metabolism. Circulating levels of MDPs are altered in chronic diseases such as diabetes type 2 and chronic kidney disease. Whether acute resistance (RE) or endurance (EE) exercise modulates circulating levels of HN and MOTS-c in humans is unknown. Following familiarization, subjects were randomized to EE (n=10, 45 min cycling at 70% of estimated VO2max), RE (n=10, 4 sets x 7RM, leg press and knee extension), or control (CON, n=10). Skeletal muscle biopsies and blood samples were collected before and at 30 minutes and 3 hours following exercise. Plasma concentration of HN and MOTS-c, skeletal muscle MOTS-c as well as gene expression of exercise related genes were analyzed. Acute EE and RE promoted changes in skeletal muscle gene expression typically seen in response to each exercise modality (c-Myc, 45S pre-rRNA, PGC-1α-total and PGC-1α-ex1b). At rest, circulating levels of HN were positively correlated to MOTS-c levels and age. Plasma levels of MDPs were not correlated to fitness outcomes (VO2max, leg strength or muscle mitochondrial (mt) DNA copy number). Circulating levels of HN were significantly elevated by acute EE but not RE. MOTS-C levels showed a trend to increase after EE. These results indicate that plasma MDP levels are not related to fitness status but that acute EE increases circulating levels of MDPs, in particular HN.


2018 ◽  
Vol 50 (5S) ◽  
pp. 115
Author(s):  
Adam Osmond ◽  
Robert J. Talmadge ◽  
Katie E. Bathgate ◽  
James R. Bagley ◽  
Lee E. Brown ◽  
...  

2000 ◽  
Vol 88 (1) ◽  
pp. 337-343 ◽  
Author(s):  
James A. Carson ◽  
Lei Wei

Overloaded skeletal muscle undergoes dramatic shifts in gene expression, which alter both the phenotype and mass. Molecular biology techniques employing both in vivo and in vitro hypertrophy models have demonstrated that mechanical forces can alter skeletal muscle gene regulation. This review's purpose is to support integrin-mediated signaling as a candidate for mechanical load-induced hypertrophy. Research quantifying components of the integrin-signaling pathway in overloaded skeletal muscle have been integrated with knowledge regarding integrins role during development and cardiac hypertrophy, with the hope of demonstrating the pathway's importance. The role of integrin signaling as an integrator of mechanical forces and growth factor signaling during hypertrophy is discussed. Specific components of integrin signaling, including focal adhesion kinase and low-molecular-weight GTPase Rho are mentioned as downstream targets of this signaling pathway. There is a need for additional mechanistic studies capable of providing a stronger linkage between integrin-mediated signaling and skeletal muscle hypertrophy; however, there appears to be abundant justification for this type of research.


Sign in / Sign up

Export Citation Format

Share Document