scholarly journals Shear behavior of lightweight self-consolidating reinforced concrete beams without transverse reinforcement

2020 ◽  
Vol 17 (4) ◽  
Author(s):  
Sergio Luis González Garcia ◽  
Caroline Vieira Lannes ◽  
Luiz Antônio Vieira Carneiro ◽  
Rancés Castillo Lara
2019 ◽  
Vol 22 (7) ◽  
pp. 1727-1738 ◽  
Author(s):  
Masoud Pourbaba ◽  
Hamed Sadaghian ◽  
Amir Mirmiran

In this research, the flexural and shear behavior of five locally developed ultra-high-performance fiber-reinforced concrete beams was experimentally investigated. Four-point loading tests were carried out on concrete specimens which were further compared with five normal-strength concrete beams constructed at the laboratory. The objective of this study is to assess the flexural and shear behavior of ultra-high-performance fiber-reinforced concrete beams and compare them with that of normal-strength beams and available equations in the literature. Results indicate underestimation of shear (up to 2.71 times) and moment capacities (minimum 1.27 times, maximum 3.55 times) by most of the equations in beams with low-reinforcement ratios. Finally, results reveal that the experimental flexural and shear capacities of ultra-high-performance fiber-reinforced concrete specimens are up to 3.5 times greater than their normal-strength counterpart specimens.


2019 ◽  
Vol 22 (14) ◽  
pp. 2998-3010 ◽  
Author(s):  
Zhao-Hui Lu ◽  
Hai Li ◽  
Wengui Li ◽  
Yan-Gang Zhao ◽  
Zhuo Tang ◽  
...  

Reinforcement corrosion exhibits an adverse effect on the shear strength of reinforced concrete structures. In order to investigate the effects of chloride-induced corrosion of reinforcing steel on the shear behavior and failure pattern of reinforced concrete beams, a total of 24 reinforced concrete beams with different concrete strength grades and arrangements of stirrups were fabricated, among which 22 beams were subjected to accelerated corrosion to achieve different degrees of reinforcement corrosion. The failure pattern, crack propagation, load–displacement response, and ultimate strength of these beams were investigated under a standard four-point loading test in this study. Extensive comparative analysis was conducted to investigate the effects of the concrete strength, shear span-to-depth ratio, and stirrup type on the shear behavior of the corroded reinforced concrete beams. The results show that increasing the stirrup yielding strength is more effective in improving the shear strength of corroded reinforced concrete beams than that of concrete compressive strength. In terms of three types of stirrups, the shear strength of the beams with deformed HRB-335 is least sensitive to stirrup corrosion, followed by the beams with smooth HPB-235 and the beams with deformed HRB-400. The effect of the different stirrups on the shear strength depends on the corrosion degree of stirrup and shear span-to-depth ratio of the beam. The predicted results of shear strength of corroded reinforced concrete beams by a proposed analytical model are well consistent with the experimental results.


2019 ◽  
Vol 21 (2) ◽  
pp. 484-500
Author(s):  
Nasim Shatarat ◽  
Rozan Hunifat ◽  
Yasmin Murad ◽  
Hasan Katkhuda ◽  
Mu'tasim Abdel Jaber

Sign in / Sign up

Export Citation Format

Share Document