scholarly journals Numerical evaluation of the seismic performance of thin reinforced concrete wall buildings representative of the industrialized building system

2022 ◽  
Vol 19 (1) ◽  
Author(s):  
Eduar Cuesvas ◽  
Roger Ortega ◽  
Johannio Marulanda ◽  
Peter Thomson ◽  
Gilberto Areiza ◽  
...  
2015 ◽  
Vol 5 (1) ◽  
pp. 15-22 ◽  
Author(s):  
M. Fofiu ◽  
A. Bindean ◽  
V. Stoian

Abstract The Precast Reinforced Concrete Wall Panel (PRCWP) presented in this paper is part of an experimental study regarding the seismic performance of precast reinforced concrete wall panels, strengthening strategies and investigation on the weakening induced by modifying the opening in these elements due to architectural demands, change of function of buildings or other reasons. The element presented is 1:1.2 scale typical Reinforced Concrete Wall Panel with a window opening used in Romania, in which the opening was changed to a door opening due to comfort considerations. The specimen was subjected to cyclic loading with the lateral loads being applied in displacement control of 0.1% drift ratio. This simulates the shear behaviour of the element. After testing the unstrengthen element we proceed to retrofit it using Carbon Fibre Strips anchored with Carbon Fibre Mash. The purpose of the paper is to present the strengthening strategy and restore the initial load bearing capacity of the element or even increase it. The experimental results of strengthen and unstrengthen specimens will be presented.


2016 ◽  
Vol 19 (12) ◽  
pp. 1902-1916 ◽  
Author(s):  
Xun Chong ◽  
Linlin Xie ◽  
Xianguo Ye ◽  
Qing Jiang ◽  
Decai Wang

The superimposed reinforced concrete wall in which both the walls and slabs are semi-precast superimposed reinforced concrete components has been widely used to construct high-rise residential buildings in some seismic regions of China. This article aims to investigate the seismic performance and reveal the inherent damage mechanism of this wall. Quasi-static tests of two full-scale superimposed reinforced concrete walls with I-shaped cross sections, consisting of the walls in orthogonal directions and two T-shaped cast-in-place boundary elements, were conducted. Through the test, the behavior of the horizontal joints between the wall panels and the foundation; the behavior of the vertical connections between the wall panels of orthogonal direction; the reliability of the connections between precast and cast-in-place concrete; and the lateral load, deformation, and energy dissipation capacities of the specimens are evaluated. In addition, a refined numerical model based on the multi-spring model was adopted to assess the seismic performance of the superimposed reinforced concrete walls with I-shaped cross sections. The reliability of this model was validated through comparison with the experimental data. This study offers valuable experimental data and numerical model references for future seismic performance assessments of superimposed reinforced concrete wall structures.


Sign in / Sign up

Export Citation Format

Share Document