scholarly journals Pedagogical introduction to equilibrium Green's functions: condensed-matter examples with numerical implementations

Author(s):  
Mariana M. Odashima ◽  
Beatriz G. Prado ◽  
E. Vernek

The Green's function method has applications in several fields in Physics, from classical differential equations to quantum many-body problems. In the quantum context, Green's functions are correlation functions, from which it is possible to extract information from the system under study, such as the density of states, relaxation times and response functions. Despite its power and versatility, it is known as a laborious and sometimes cumbersome method. Here we introduce the equilibrium Green's functions and the equation-of-motion technique, exemplifying the method in discrete lattices of non-interacting electrons. We start with simple models, such as the two-site molecule, the infinite and semi-infinite one-dimensional chains, and the two-dimensional ladder. Numerical implementations are developed via the recursive Green's function, implemented in Julia, an open-source, efficient and easy-to-learn scientific language. We also present a new variation of the surface recursive Green's function method, which can be of interest when simulating simultaneously the properties of surface and bulk.

1958 ◽  
Vol 36 (2) ◽  
pp. 192-205 ◽  
Author(s):  
J. A. Steketee

In this paper a Green's function method is developed to deal with the problem of a Volterra dislocation in a semi-infinite elastic medium in such a way that the boundary surface of the medium remains free from stresses. (A Volterra dislocation is here defined as a surface across which the displacement components show a discontinuity of the type Δu = U + Ω ×r, where U and Ω are constant vectors.) It is found that the general problem requires the construction of six sets of Green's functions. The method for the construction is outlined and applied to one of the six sets, which is of the type of two double forces with moments in a plane parallel with the boundary. The displacement field thus generated is computed. Several of the results obtained are believed to be of geophysical interest, but a more detailed discussion of these applications is postponed to a further communication which is being prepared.


2014 ◽  
Vol 17 (N/A) ◽  
pp. 89-145 ◽  
Author(s):  
Sridhar Sadasivam ◽  
Yuhang Che ◽  
Zhen Huang ◽  
Liang Chen ◽  
Satish Kumar ◽  
...  

Author(s):  
Norman J. Morgenstern Horing

Chapter 09 Nonequilibrium Green’s functions (NEGF), including coupled-correlated (C) single- and multi-particle Green’s functions, are defined as averages weighted with the time-development operator U(t0+τ,t0). Linear conductivity is exhibited as a two-particle equilibrium Green’s function (Kubo-type formulation). Admitting particle sources (S:η,η+) and non-conservation of number, the non-equilibrium multi-particle Green’s functions are constructed with numbers of creation and annihilation operators that may differ, and they may be derived as variational derivatives with respect to sources η,η+ of a generating functional eW=TrU(t0+τ,t0)CS/TrU(t0+τ,t0)C. (In the non-interacting case this yields the n-particle Green’s function as a permanent/determinant of single-particle Green’s functions.) These variational relations yield a symmetric set of multi-particle Green’s function equations. Cumulants and the Linked Cluster Theorem are discussed and the Random Phase Approximation (RPA) is derived variationally. Schwinger’s variational differential formulation of perturbation theories for the Green’s function, self-energy, vertex operator, and also shielded potential perturbation theory, are reviewed. The Langreth Algebra arises from analytic continuation of integration of products of Green’s functions in imaginary time to the real-time axis with time-ordering along the integration contour in the complex time plane. An account of the Generalized Kadanoff-Baym Ansatz is presented.


Author(s):  
Norman J. Morgenstern Horing

Multiparticle thermodynamic Green’s functions, defined in terms of grand canonical ensemble averages of time-ordered products of creation and annihilation operators, are interpreted as tracing the amplitude for time-developing correlated interacting particle motions taking place in the background of a thermal ensemble. Under equilibrium conditions, time-translational invariance permits the one-particle thermal Green’s function to be represented in terms of a single frequency, leading to a Lehmann spectral representation whose frequency poles describe the energy spectrum. This Green’s function has finite values for both t>t′ and t<t′ (unlike retarded Green’s functions), and the two parts G1> and G1< (respectively) obey a simple proportionality relation that facilitates the introduction of a spectral weight function: It is also interpreted in terms of a periodicity/antiperiodicity property of a modified Green’s function in imaginary time capable of a Fourier series representation with imaginary (Matsubara) frequencies. The analytic continuation from imaginary time to real time is discussed, as are related commutator/anticommutator functions, also retarded/advanced Green’s functions, and the spectral weight sum rule is derived. Statistical thermodynamic information is shown to be embedded in physical features of the one- and two-particle thermodynamic Green’s functions.


Author(s):  
Klaus Morawetz

The method of the equation of motion is used to derive the Martin–Schwinger hierarchy for the nonequilibrium Green’s functions. The formal closure of the hierarchy is reached by using the selfenergy which provides a recipe for how to construct selfenergies from approximations of the two-particle Green’s function. The Langreth–Wilkins rules for a diagrammatic technique are shown to be equivalent to the weakening of initial correlations. The quantum transport equations are derived in the general form of Kadanoff and Baym equations. The information contained in the Green’s function is discussed. In equilibrium this leads to the Matsubara diagrammatic technique.


Sign in / Sign up

Export Citation Format

Share Document